Bonn-Gatchina partial wave analysis

A. Sarantsev

HISKP, Uni-Bonn (Bonn) and PNPI (Gatchina)

A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev and U. Thoma.

The main objective: the search for new baryon states.

- 1. The P-vector based analysis of single and multi-meson photoproduction data. The combined analysis of CB-ELSA data on $\gamma p \rightarrow \pi^0 p$, $\gamma p \rightarrow \eta p$, $\gamma p \rightarrow \pi^0 \pi^0 p$, $\gamma p \rightarrow \pi^0 \eta p$, $\gamma n \rightarrow \eta n$, $\gamma n \rightarrow \pi^0 n$ and $\gamma p \rightarrow \omega p$ with data from other collaborations: CLAS, GRAAL, LEPS.
- 2. The K-matrix analysis of pion-induced data on the reactions $\pi N \to \pi N$ (on the basis of SAID energy-fixed partial wave analysis), $\pi p \to \pi^0 \pi^0 n$ and recently included: $\pi p \to \eta n$, $\pi^- p \to K^0 \Lambda$ and $\pi^+ p \to K^+ \Sigma$.
- 3. Analysis of NN interaction. The analysis of $pp \to K\Lambda p$ data and analysis of the $pp \to \pi^0 p$ and $np \to pp\pi^-$ data.

For combined analysis of a larger data set a new approach is needed:

- 1. Fully relativistically invariant.
- 2. Convenient for combined analysis of single and multi-meson photoproduction.
- 3. Energy dependent, which allow us to apply directly the unitarity and analyticity conditions.
- 4. Convenient for calculation of the triangle and box diagrams or projection of the t and u-channel exchange amplitudes to the partial waves in s-channel.
- A. Anisovich, E. Klempt, A. Sarantsev and U. Thoma, Eur. Phys. J. A 24, 111 (2005)
- A. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A 30 (2006) 427
- A. V. Anisovich, V. V. Anisovich, E. Klempt, V. A. Nikonov and A. V. Sarantsev, Eur. Phys. J. A 34 (2007) 129.

1 Bosons

1.1 Propagator – Green function

Let us introduce a function which is a solution of the following equation ($t = x_0$):

$$\left(\frac{\partial^2}{\partial x_\mu \partial x_\mu} + m^2\right)G(x - x') = \delta^4(x - x')$$

Properties of the Green function:

If the Green function is a solution of the equation:

$$R(x)G(x - x') = \delta^4(x - x')$$

where R(x) is some relativistically invariant operator, then the solution of the equation:

$$R(x)\Psi(x) = V(x)\Psi(x)$$

is:

$$\Psi(x) = \int G(x - x')V(x')d^4x'$$

In the case of equation for a free particle the Green function is called a propagator and is equal to:

$$G(x - x') = <0|T\Psi(x)\Psi^{*}(x')|0>$$

If wave function is a spinor or tensor with rank n in Lorentz space then:

$$G^{\mu_1\mu_2...\mu_n}_{\nu_1\nu_2...\nu_n}(x-x') = <0|T\Psi_{\mu_1\mu_2...\mu_n}(x)\Psi^*_{\nu_1\nu_2...\nu_n}(x')|0>$$

And equation is:

$$R(x)G^{\mu_1\mu_2...\mu_n}_{\nu_1\nu_2...\nu_n}(x-x') = \delta^4(x-x')\prod_{i=1}^n \delta_{\mu_i\nu_i}$$

For spinless particle in momentum representation we have:

$$(p^2 - m^2)G = 1$$
 $G = \frac{1}{p^2 - m^2}$

Particles with spin 1

A particle with spin 1 is described by a 4-vector Ψ_{μ} and obeys the K-G equation:

$$\frac{\partial^2}{\partial x_\mu \partial x_\mu} + m^2)\Psi_\mu(x) = 0$$

1) In c.m. system such wave function has only three components. It means that in any system only three components are independent.

2)A free propagating particle with fixed spin can not became a particle with another quantum numbers without interaction.

If $\Psi_{\mu}(x)$ is a wave function of particle with spin 1 and $\Psi(x)$ is a wave function of a particle with spin 0:

$$\int \Psi_{\mu}(x)\Psi^{*}(x)d^{4}x = \alpha p_{\mu}$$

Where α - is a scalar function of p^2 . If such integral is equal to 0 for any wave functions and any p_{μ} it means that Ψ_{μ} has no projection on this vector and:

$$p_{\mu}\Psi_{\mu}=0$$

In momentum representation:

$$\Psi_{\mu} = \frac{1}{\sqrt{2\varepsilon}} u_{\mu} e^{ipx}$$

and for wave function u_{μ} we obtain:

$$p_{\mu}u_{\mu} = 0$$

A spin 2 particle in c.m. system has 5 independent components and described by symmetrical tensor $\Psi_{\mu\nu}$. For the transition between spin 2 and spin 0 state we have:

$$\int \Psi_{\mu\nu}(x)\Psi^*(x)d^4x = \beta \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2}\right)$$

Then an additional condition is:

$$g_{\mu\nu}\Psi_{\mu\nu} = 0 \qquad \qquad g_{\mu\nu}u_{\mu\nu} = 0$$

Such procedure can be repeated for any spin, providing that the tensor have only 2s + 1 independent components. Thus for any integer spin:

$$p^{2}u_{\mu_{1}\mu_{2}...\mu_{n}} = m^{2}u_{\mu_{1}\mu_{2}...\mu_{n}}$$
$$p_{\mu_{i}}u_{\mu_{1}\mu_{2}...\mu_{n}} = 0$$
$$g_{\mu_{i}\mu_{j}}u_{\mu_{1}\mu_{2}...\mu_{n}} = 0$$
$$u_{\mu_{1}...\mu_{i}...\mu_{j}...\mu_{n}} = u_{\mu_{1}...\mu_{j}...\mu_{n}}$$

These conditions are the main basis for the construction of the projection operators, which are defined as:

$$G^{\mu_1\mu_2\dots\mu_n}_{\nu_1\nu_2\dots\nu_n} = (-1)^n O^{\mu_1\mu_2\dots\mu_n}_{\nu_1\nu_2\dots\nu_n} \frac{1}{p^2 - m^2}$$

2 Boson projection operators

In momentum representation:

$$O_{\nu_1\nu_2...\nu_n}^{\mu_1\mu_2...\mu_n} = (-1)^n \sum_{i=1}^{2n+1} u_{\mu_1\mu_2...\mu_n}^{(i)} u_{\nu_1\nu_2...\nu_n}^{(i)*}$$

The projection operator can depends only on the total momentum and the metrical tensor. For spin 0 it is a unit operator. For spin 1 the only possible combination is:

$$O^{\mu}_{\nu} = g^{\perp}_{\mu\nu} = g_{\mu\nu} - \frac{P_{\mu}P_{\nu}}{P^2}$$

The propagator for the particle with spin S > 2 must be constructed from the tensors $g_{\mu\nu}^{\perp}$: this is the only combination which satisfies:

$$P_{\mu}g_{\mu\nu}^{\perp} = 0.$$

Then for spin 2 state we obtain:

$$O_{\nu_1\nu_2}^{\mu_1\mu_2} = \frac{1}{2} (g_{\mu_1\nu_1}^{\perp} g_{\mu_2\nu_2}^{\perp} + g_{\mu_1\nu_2}^{\perp} g_{\mu_2\nu_1}^{\perp}) - \frac{1}{3} g_{\mu_1\mu_2}^{\perp} g_{\nu_1\nu_2}^{\perp}$$

There is a recurrent expression for the boson projector operator:

$$O_{\nu_{1}...\nu_{L}}^{\mu_{1}...\mu_{L}} = \frac{1}{L^{2}} \left(\sum_{i,j=1}^{L} g_{\mu_{i}\nu_{j}}^{\perp} O_{\nu_{1}...\nu_{j-1}\nu_{j+1}...\nu_{L}}^{\mu_{1}...\mu_{l-1}\mu_{i+1}...\mu_{L}} - \frac{4}{(2L-1)(2L-3)} \sum_{i< j,k< m}^{L} g_{\mu_{i}\mu_{j}}^{\perp} g_{\nu_{k}\nu_{m}}^{\perp} O_{\nu_{1}...\nu_{k-1}\nu_{k+1}...\nu_{m-1}\nu_{m+1}...\nu_{L}}^{\mu_{l}...\mu_{L}} \right)$$

Orbital momentum operator

Let us consider decay of a resonance into two scalar (pseudoscalar) particles. The angular momentum operator can be constructed only from momenta of particles k_1 , k_2 and metric tensor $g_{\mu\nu}$.

The wave function of a scalar resonance is a const: $X^0 = 1$ The wave function of vector particle is a vector $X^{(1)}_{\mu}$, constructed from: $k_{\mu} = \frac{1}{2}(k_{1\mu} - k_{2\mu})$ and $P_{\mu} = (k_{1\mu} + k_{2\mu})$.

Orthogonality: no transition between vector and scalar states:

$$\int \frac{d^4k}{4\pi} X^{(1)}_{\mu} X^{(0)} = 0$$

Then:

$$\int \frac{d^4k}{4\pi} X^{(n)}_{\mu_1\dots\mu_n} X^{(n-1)}_{\mu_2\dots\mu_n} = 0$$

The integral over internal momentum can be only proportional to the external momentum. Then:

$$\int \frac{d^4k}{4\pi} X^{(n)}_{\mu_1...\mu_n} X^{(n-1)}_{\mu_2...\mu_n} = \xi P_{\mu_1}$$
$$X^{(1)}_{\mu} P_{\mu} = 0 \qquad X^{(n)}_{\mu_1...\mu_n} P_{\mu_j} = 0$$

Then:

$$X^{(1)}_{\mu} = k^{\perp}_{\mu} = k_{\nu} g^{\perp}_{\nu\mu}; \qquad g^{\perp}_{\nu\mu} = \left(g_{\nu\mu} - \frac{P_{\nu}P_{\nu}}{p^2}\right) ;$$

The production of two operators different by even number of indices is proportional to $g_{\mu\nu}^{\perp}$. To satisfy orthogonality we need the traceless condition.

$$X^{(n)}_{\mu_1\mu_2...\mu_n}g_{\mu_i\mu_j} = 0$$

The orthogonality and symmetry properties can be written as the set of following conditions:

1.
$$X_{\mu_1...\mu_i...\mu_j...\mu_n}^{(n)} = X_{\mu_1...\mu_j...\mu_i}^{(n)}$$
 (symmetry)
2. $P_{\mu_i} X_{\mu_1...\mu_i...\mu_n}^{(n)} = 0$ (P-orthogonality)
3. $g_{\mu_1\mu_2} X_{\mu_1\mu_2...\mu_n}^{(n)} = 0$ (tracelessness)

For low orbital momenta:

$$X^{0} = 1; \quad X^{1}_{\mu} = k^{\perp}_{\mu}; \quad X^{2}_{\mu\nu} = \frac{3}{2} \left(k^{\perp}_{\mu} k^{\perp}_{\nu} - \frac{1}{3} k^{2}_{\perp} g^{\perp}_{\mu\nu} \right);$$
$$X^{3}_{\mu\nu\alpha} = \frac{5}{2} \left[k^{\perp}_{\mu} k^{\perp}_{\nu} k^{\perp}_{\alpha} - \frac{k^{2}_{\perp}}{5} \left(g^{\perp}_{\mu\nu} k^{\perp}_{\alpha} + g^{\perp}_{\mu\alpha} k^{\perp}_{\nu} + g_{\nu\alpha} k^{\perp}_{\mu} \right) \right],$$

The recurrent expression for the operators $X_{\mu_1...\mu_n}^{(n)}$

$$X_{\mu_{1}\dots\mu_{n}}^{(n)} = \frac{2n-1}{n^{2}} \sum_{i=1}^{n} k_{\mu_{i}}^{\perp} X_{\mu_{1}\dots\mu_{i-1}\mu_{i+1}\dots\mu_{n}}^{(n-1)} - \frac{2k_{\perp}^{2}}{n^{2}} \sum_{\substack{i,j=1\\i< j}}^{n} g_{\mu_{i}\mu_{j}} X_{\mu_{1}\dots\mu_{i-1}\mu_{i+1}\dots\mu_{j-1}\mu_{j+1}\dots\mu_{n}}^{(n-2)}$$

Taking into account the traceless property of $X^{(n)}$ we have:

$$X_{\mu_1\dots\mu_n}^{(n)} X_{\mu_1\dots\mu_n}^{(n)} = \alpha(n) (k_{\perp}^2)^n \qquad \alpha(n) = \prod_{i=1}^n \frac{2i-1}{i} = \frac{(2n-1)!}{n!}.$$

From the recourcive procedure one can get the following expression for the operator $X^{(n)}$:

$$X_{\mu_{1}\dots\mu_{n}}^{(n)} = \left(\prod_{k=1}^{n} \frac{2k-1}{k}\right) \left[k_{\mu_{1}}^{\perp} k_{\mu_{2}}^{\perp} \dots k_{\mu_{n}}^{\perp} - \frac{k_{\perp}^{2}}{2n-1} \left(g_{\mu_{1}\mu_{2}}^{\perp} k_{\mu_{3}}^{\perp} \dots k_{\mu_{n}}^{\perp} + \dots\right) + \frac{k_{\perp}^{4}}{(2n-1)(2n-3)} \left(g_{\mu_{1}\mu_{2}}^{\perp} g_{\mu_{3}\mu_{4}}^{\perp} k_{\mu_{5}}^{\perp} \dots k_{\mu_{4}}^{\perp} + \dots\right) + \dots\right].$$

2.1 Scattering amplitude of two pseudoscalar (scalar) particles.

If we denote the relative momentum of the system before and after interaction as k and q, then amplitude in the partial wave L (L = n) is:

$$A = a(m_1^2, m_2^2, P^2) X^{(n)}_{\mu_1 \dots \mu_n}(k) X^{(n)}_{\mu_1 \dots \mu_n}(q)$$

The $a(k_{\perp}^2,q_{\perp}^2,P^2)$ is a kinematical factor which depends only on invariants.

$$X_{\mu_{1}...\mu_{n}}^{(n)}(k)X_{\mu_{1}...\mu_{n}}^{(n)}(q) = \left(\sqrt{k_{\perp}^{2}}\right)^{n}\left(\sqrt{q_{\perp}^{2}}\right)^{n}P_{n}(z), \qquad z = \frac{(k^{\perp}q^{\perp})}{\sqrt{k_{\perp}^{2}}\sqrt{q_{\perp}^{2}}}$$

Then:

$$A = a(m_1^2, m_2^2, P^2) \left(\sqrt{k_\perp^2}\right)^n \left(\sqrt{q_\perp^2}\right)^n P_n(z)$$

Structure of the fermion propagator

The orthogonality condition has a different form in a fermion case:

$$\int \Psi_{\mu}(x)\Psi^{*}(x)d^{4}x = A p_{\mu} + B \gamma_{\mu}$$

where A and B are matrices in spinor space.

It means that we have an additional condition:

$$\gamma_{\mu}\Psi_{\mu} = 0 \qquad \qquad \gamma_{\mu}u_{\mu} = 0$$

Thus in momentum space we have:

$$(\hat{p} - m)u_{\mu_1\dots\mu_n} = 0$$

$$p_{\mu_i}u_{\mu_1\dots\mu_n} = 0$$

$$u_{\mu_1\dots\mu_i\dots\mu_j\dots\mu_n} = u_{\mu_1\dots\mu_j\dots\mu_i\dots\mu_n}$$

$$g_{\mu_i\mu_j}u_{\mu_1\dots\mu_n} = 0$$

$$\gamma_{\mu_i}\Psi_{\mu_1\dots\mu_n} = 0$$

These properties define the structure of the fermion projection operator $P^{\mu_1...\mu_n}_{\nu_1...\nu_n}$:

$$G^{\mu_1\dots\mu_n}_{\nu_1\dots\nu_n} = \frac{(-1)^n}{2m} \frac{m+\hat{p}}{m^2 - p^2} P^{\mu_1\dots\mu_n}_{\nu_1\dots\nu_n}$$

The $P^{\mu_1...\mu_L}_{\nu_1...\nu_n}$ is equal to 1 for J=1/2 particle. For particle with spin 3/2 it has form:

$$\frac{1}{2} \left(g_{\mu\nu}^{\perp} - \gamma_{\mu}^{\perp} \gamma_{\nu}^{\perp} / 3 \right)$$

where

$$\gamma_{\mu}^{\perp} = g_{\mu\nu}^{\perp} \gamma_{\nu}.$$

The boson projector operator projects any operator to one which satisfies all boson properties. It means that we can write:

$$P^{\mu_1\dots\mu_n}_{\nu_1\dots\nu_n} = O^{\mu_1\dots\mu_n}_{\alpha_1\dots\alpha_n} T^{\alpha_1\dots\alpha_n}_{\beta_1\dots\beta_n} O^{\beta_1\dots\beta_n}_{\nu_1\dots\nu_n}$$

The $T^{\alpha_1...\alpha_n}_{\beta_1...\beta_n}$ operator can have a rather simple form: all symmetry and orthogonality conditions will be imposed by O-operators. First of all T-operator can be constructed only out of the metrical tensor and γ -matrices. Second a construction like $\gamma_{\alpha_i}\gamma_{\alpha_i}$:

$$\gamma_{\alpha_i}\gamma_{\alpha_j} = \frac{1}{2}g_{\alpha_i\alpha_j} + \sigma_{\alpha_i\alpha_j}, \quad \text{where} \quad \sigma_{\alpha_i\alpha_j} = \frac{1}{2}(\gamma_{\alpha_i}\gamma_{\alpha_j} - \gamma_{\alpha_j}\gamma_{\alpha_i})$$

gives zero after production with O-operator (first term due to traceless and second due to symmetrical properties). Then the only one structure which can be constructed out of gamma matrices is $g_{\alpha_i\beta_j}$ and $\sigma_{\alpha_i\beta_j}$. Moreover, taking into account symmetrical properties of O-operator the latest can be used as for example $\sigma_{\alpha_1\beta_1}$:

$$T^{\alpha_1\dots\alpha_L}_{\beta_1\dots\beta_L} = \frac{L+1}{2L+1} \left(g_{\alpha_1\beta_1} - \frac{L}{L+1} \sigma_{\alpha_1\beta_1} \right) \prod_{i=2}^L g_{\alpha_i\beta_i}$$

Here the coefficients are calculated to satisfy the orthogonality condition with γ -matrices.

πN interaction

Pion has quantum numbers $J^{PC} = 0^{-+}$, proton $1/2^+$. Then in S-wave the only state can be formed is $1/2^-$. P-wave can form two states $1/2^+$ and $3/2^+$. In PDG states are defined by the quantum numbers in πN decay: $L_{2I,2J}$. For example D_{13} means $3/2^- N^*$ state. States where J = L - 1/2 called '-' states ($1/2^+$, $3/2^-$, $5/2^+$,...) and states with

$$J = L + 1/2$$
 called '+' states ($1/2^{-}$, $3/2^{+}$, $5/2^{-}$,...).

For '+' states and for '-' states:

$$N_{\mu_1...\mu_n}^+ = X_{\mu_1...\mu_n}^{(n)} \qquad N_{\mu_1...\mu_n}^- = i\gamma_{\nu}\gamma_5 X_{\nu\mu_1...\mu_n}^{(n+1)}$$

$$A = \bar{u}(k_1)\tilde{N}^{\pm}_{\mu_1\dots\mu_n}F^{\mu_1\dots\mu_n}_{\nu_1\dots\nu_n}(P)N^{\pm}_{\nu_1\dots\nu_n}u(q_1)BW^{\pm}_L(s)$$

where

$$F^{\mu_1\dots\mu_L}_{\nu_1\dots\nu_L}(p) = (m+\hat{p})O^{\mu_1\dots\mu_L}_{\alpha_1\dots\alpha_L}\frac{L+1}{2L+1} \left(g^{\perp}_{\alpha_1\beta_1} - \frac{L}{L+1}\sigma_{\alpha_1\beta_1}\right) \prod_{i=2}^L g_{\alpha_i\beta_i}O^{\beta_1\dots\beta_L}_{\nu_1\dots\nu_L}$$

In c.m.s. of the reaction

$$A_{\pi N} = \omega^* \left[G(s,t) + H(s,t)i(\vec{\sigma}\vec{n}) \right] \omega' ,$$

$$G(s,t) = \sum_L \left[(L+1)F_L^+(s) - LF_L^-(s) \right] P_L(z) ,$$

$$H(s,t) = \sum_L \left[F_L^+(s) + F_L^-(s) \right] P'_L(z) .$$

$$F_{L}^{+} = -(|\vec{k}||\vec{q}|)^{L} \sqrt{\chi_{i}\chi_{f}} \frac{\alpha(L)}{2L+1} BW_{L}^{+}(s) ,$$

$$F_{L}^{-} = (|\vec{k}||\vec{q}|)^{L} \sqrt{\chi_{i}\chi_{f}} \frac{\alpha(L)}{L} BW_{L}^{-}(s) .$$

$$\chi_i = m_i + k_{i0}$$
 $\alpha(L) = \prod_{l=1}^L \frac{2l-1}{l} = \frac{(2L-1)!!}{L!}$.

γN interaction

Photon has quantum numbers $J^{PC} = 1^{--}$, proton $1/2^+$. Then in S-wave two states can be formed is $1/2^-$ and $3/2^-$. Then P-wave $1/2^+$, $3/2^+$ and $1/2^+$, $3/2^+$, $5/2^+$. In general case: $1/2^-$, $1/2^+$ described by two amplitudes and higher states by three

amplitudes.

$$V_{\alpha_{1}...\alpha_{n}}^{(1+)\mu} = \gamma_{\mu}i\gamma_{5}X_{\alpha_{1}...\alpha_{n}}^{(n)}, \qquad V_{\alpha_{1}...\alpha_{n}}^{(1-)\mu} = \gamma_{\xi}\gamma_{\mu}X_{\xi\alpha_{1}...\alpha_{n}}^{(n+1)}, \\ V_{\alpha_{1}...\alpha_{n}}^{(2+)\mu} = \gamma_{\nu}i\gamma_{5}X_{\mu\nu\alpha_{1}...\alpha_{n}}^{(n+2)}, \qquad V_{\alpha_{1}...\alpha_{n}}^{(2-)\mu} = X_{\mu\alpha_{1}...\alpha_{n}}^{(n+1)}, \\ V_{\alpha_{1}...\alpha_{n}}^{(3+)\mu} = \gamma_{\nu}i\gamma_{5}X_{\nu\alpha_{1}...\alpha_{n}}^{(n+1)}g_{\mu\alpha_{n}}^{\perp}, \qquad V_{\alpha_{1}...\alpha_{n}}^{(3-)\mu} = X_{\alpha_{2}...\alpha_{n}}^{(n-1)}g_{\alpha_{1}\mu}^{\perp}.$$

Gauge invariance: $\varepsilon_{\mu}q_{1\mu} = 0$ where q_1 -photon momentum.

$$\varepsilon_{\mu} V^{(2\pm)\mu}_{\alpha_1\dots\alpha_n} = C^{\pm} \varepsilon_{\mu} V^{(3\pm)\mu}_{\alpha_1\dots\alpha_n}$$

where C^{\pm} do not depend on angles.

$$A = \bar{u}(k_1) N^{\pm}_{\mu_1 \dots \mu_n} F^{\mu_1 \dots \mu_n}_{\nu_1 \dots \nu_n}(P) V^{(i\pm)\mu}_{\nu_1 \dots \nu_n} u(q_1) B W^{\pm}_L(s) \varepsilon_{\mu}$$

The amplitude for the photoproduction of a single pseudoscalar has structure

$$A = \omega^* J_\mu \varepsilon_\mu \omega' \; ,$$

$$J_{\mu} = i\mathcal{F}_1\sigma_{\mu} + \mathcal{F}_2(\vec{\sigma}\vec{q})\frac{\varepsilon_{\mu ij}\sigma_i k_j}{|\vec{k}||\vec{q}|} + i\mathcal{F}_3\frac{(\vec{\sigma}\vec{k})}{|\vec{k}||\vec{q}|}q_{\mu} + i\mathcal{F}_4\frac{(\vec{\sigma}\vec{q})}{\vec{q}^2}q_{\mu} .$$

$$\mathcal{F}_{1}(z) = \sum_{L=0}^{\infty} [LM_{L}^{+} + E_{L}^{+}]P_{L+1}'(z) + [(L+1)M_{L}^{-} + E_{L}^{-}]P_{L-1}'(z) ,$$

$$\mathcal{F}_{2}(z) = \sum_{L=1}^{\infty} [(L+1)M_{L}^{+} + LM_{L}^{-}]P_{L}'(z) ,$$

$$\mathcal{F}_{3}(z) = \sum_{L=1}^{\infty} [E_{L}^{+} - M_{L}^{+}]P_{L+1}''(z) + [E_{L}^{-} + M_{L}^{-}]P_{L-1}''(z) ,$$

$$\mathcal{F}_{4}(z) = \sum_{L=2}^{\infty} [M_{L}^{+} - E_{L}^{+} - M_{L}^{-} - E_{L}^{-}]P_{L}''(z).$$

Our amplitudes can be algebraically rewritten to multipole representation:

$$E_L^{+(\frac{1}{2})} = \sqrt{\chi_i \chi_f} \frac{\alpha(L)}{2L+1} \frac{(|\vec{k}| |\vec{q}|)^L}{L+1} BW^+(s) ,$$

$$M_L^{+(\frac{1}{2})} = E_L^{+(\frac{1}{2})} .$$

$$E_L^{+(\frac{3}{2})} = \sqrt{\chi_i \chi_f} \frac{\alpha(L)}{2L+1} \frac{(|\vec{k}| |\vec{q}|)^L}{L+1} BW^+(s) ,$$

$$M_L^{+(\frac{3}{2})} = -\frac{E_L^{+(\frac{3}{2})}}{L} .$$

The resonance amplitudes for meson photoproduction

The general form of the angular dependent part of the amplitude:

$$\bar{u}(q_1)\tilde{N}_{\alpha_1\dots\alpha_n}(R_2 \to \mu N)F^{\alpha_1\dots\alpha_n}_{\beta_1\dots\beta_n}(q_1+q_2)\tilde{N}^{(j)\beta_1\dots\beta_n}_{\gamma_1\dots\gamma_m}(R_1 \to \mu R_2)$$
$$F^{\gamma_1\dots\gamma_m}_{\xi_1\dots\xi_m}(P)V^{(i)\mu}_{\xi_1\dots\xi_m}(R_1 \to \gamma N)u(k_1)\varepsilon_\mu$$

$$F^{\mu_1\dots\mu_L}_{\nu_1\dots\nu_L}(p) = (m+\hat{p})O^{\mu_1\dots\mu_L}_{\alpha_1\dots\alpha_L}\frac{L+1}{2L+1}\left(g^{\perp}_{\alpha_1\beta_1} - \frac{L}{L+1}\sigma_{\alpha_1\beta_1}\right)\prod_{i=2}^L g_{\alpha_i\beta_i}O^{\beta_1\dots\beta_L}_{\nu_1\dots\nu_L}$$
$$\sigma_{\alpha_i\alpha_j} = \frac{1}{2}(\gamma_{\alpha_i}\gamma_{\alpha_j} - \gamma_{\alpha_j}\gamma_{\alpha_i})$$

Diagram approach to the calculation of the scattering amplitude

Let us consider a state which is produced from two interacting particles, then propagates and decays into same two particles in the final state. The amplitude for such process can be represented as a sum of the diagrams:

The amplitude can be found as direct sum of the diagrams:

$$A = \frac{1}{M_0^2 - s} \frac{1}{1 - \frac{B(s)}{M_0^2 - s}}$$

This amplitude also can be found by solving the following equation:

$$A = A \frac{B(s)}{M_0^2 - s} + \frac{g^2}{M_0^2 - s}$$
$$A = \frac{g^2}{M_0^2 - s} \frac{1}{1 - \frac{B(s)}{M_0^2 - s}} = \frac{g^2}{M_0^2 - s - B(s)}$$

Here M_0 is a bare mass of the state and B(s) is the two body loop diagram:

$$B^{F} = \int \frac{d^{4}k}{i(2\pi)^{4}} \frac{g^{2}}{(m^{2} - k^{2})(m^{2} - (P - k)^{2})},$$

Let us assume that the vertex (coupling) g has no singularities and is a smooth function in the physical region. The imaginary part of the loop diagram appears at the energy $s > 4m^2$ and can be calculated by:

$$(m^{2} - k^{2})^{-1}(m^{2} - (P - k)^{2})^{-1} \to (-2\pi)^{2}i\,\delta(m^{2} - k^{2})\Theta(k_{0})$$
$$\delta(m^{2} - (P - k)^{2})\Theta(P_{0} - k_{0})$$

Then loop diagram can be rewritten in the dispersion representation:

$$B(s) = \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{g(s')\rho(s')g(s')}{s'-s-i0} = Re \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{g(s')\rho(s')g(s')}{s'-s} - i\rho(s)g^2(s)$$

The real part of the B-function does not have any singularities in the physical region. It is a smooth function and can be used for renormalization of the bare state mass (or neglected in some cases). Then:

$$A(s) = \frac{g^2}{M^2 - s - i\rho(s)g^2} \qquad M^2 = M_0^2 - ReB(M^2)$$

And we obtain a Breit-Wigner expression with $M\Gamma=g^2\rho(M^2).$

Let us calculate analytically the loop diagram assuming that g is a constant. First we need a renormalization:

$$B(s) = B(M^2) + (s - M^2) \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{g^2}{(s' - s)(s' - M^2)} \sqrt{\frac{s' - 4m^2}{s'}}$$

Such integral is equal to:

$$B(s) = ReB(M^2) + \frac{g^2}{\pi} [\rho(s) \ln \frac{1 - \rho(s)}{1 + \rho(s)} - \rho(M^2) \ln \frac{1 - \rho(M^2)}{1 + \rho(M^2)}] + i\rho(s)g^2$$

At $s \rightarrow 0$:

$$i\rho(s) = i\sqrt{\frac{s - 4m^2}{s}} \to -\infty$$

$$i\rho(s)(1. - \frac{i}{\pi}ln\frac{1 - \rho(s)}{1 + \rho(s)}) = i\sqrt{\frac{s - 4m^2}{s}}(1 - \frac{2}{\pi}arctg\frac{4m^2 - s}{s}) \to const$$

Black curve - BW amplitude, red curve - full B(s) calculation, blue curve - BW amplitude with reduced width, magenta - dispersion correction of the real part.

P-vector approach

Let us consider photoproduction of two pions. This case is different from the $\pi\pi$ scattering by the first interaction:

The first interaction can be the direct production of K-matrix poles or nonresonant production: $\gamma\gamma \to \pi\pi$, $\gamma\gamma \to K\bar{K}$ and so on.

Combined analysis of the different reactions:

For pion induced reactions the transition partial wave amplitude can be written as:

$$A_{1i} = K_{1j}(I - i\rho K)_{ji}^{-1}$$

and

$$K_{ij} = \sum_{\alpha} \frac{g_i^{\alpha} g_j^{\alpha}}{M_{\alpha}^2 - s} + f_{ij}(s) \qquad \qquad f_{ij} = \frac{f_{ij}^{(1)} + f_{ij}^{(2)} \sqrt{s}}{s - s_0^{ij}}$$

where f_{ij} is nonresonant transition part.

For the photoproduction:

$$A_k = P_j (I - i\rho K)_{jk}^{-1}$$

The vector of the initial interaction has the form:

$$P_j = \sum_{\alpha} \frac{\Lambda^{\alpha} g_j^{\alpha}}{M_{\alpha}^2 - s} + F_j(s)$$

Here F_j is nonresonant production of the final state j.

D-vector approach

For πN transition into channel 'a' the amplitude can be written as:

$$A_a = \hat{D}_a + [\hat{K}(\hat{I} - i\hat{\rho}\hat{K})^{-1}\hat{\rho}]_{ab}\hat{D}_b ,$$

For strong channels:

$$D_a = K_{1a}$$
 $A_a = K_{1j}(I - i\rho K)_{ji}^{-1}$

For weak channels:

$$D_a = \sum_{\alpha} \frac{g_1^{\alpha} \Lambda_a^{dec}}{M_{\alpha}^2 - s} + d_{1a}(s)$$

For photoproduction of 'weak channels'

$$A_{ab} = \hat{G}_{ab} + \hat{P}_a(\hat{I} - i\hat{\rho}\hat{K})^{-1}\hat{\rho}\hat{D}_b \qquad G_{ab} = \sum_{\alpha} \frac{\Lambda_b \Lambda_a^{dec}}{M_{\alpha}^2 - s} + b_{ab}(s)$$

-0.4

-0.6

-0.8

2

4′

3'

1.4 1.6 1.8 2

·3

2.2 2.4

Re s, GeV²

Phase volumes

Two body phase volume:

$$\rho(s, m_1, m_2) = \frac{2k}{s} = \frac{\sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}}{s}$$

Three body phase volume:

$$\rho_{3}(s) = \int_{(m_{2}+m_{3})^{2}} \frac{ds_{23}}{\pi} \frac{\rho(s, \sqrt{s_{23}}, m_{1}) M_{R}\Gamma_{tot}^{R}}{(M_{R}^{2}-s_{23})^{2}+(M_{R}\Gamma_{tot}^{R})^{2}} ,$$

$$M_{R}\Gamma_{tot}^{R} = \rho(s_{23}, m_{2}, m_{3})g^{2}(s_{23}) ,$$

$$\sum_{\substack{s=0,2\\ s=0}}^{s=0} \frac{1}{s_{cut}} \frac{1}{s_{cut}} \sum_{\substack{s=0\\ s=0}}^{s=0} \frac{1}{$$

-0.2

-0.3

-0.4

1

A

1.2 1.4

¥В

(√s-m₄)²

Re s₂₃, GeV²

2

1.6 1.8

Α

Pole position in the complex plane.

Two sheets are defined as:

$$\rho(s, m_1, m_2) = \frac{\sqrt{(s - (m_N + m_\eta)^2)(s - (m_N - m_\eta)^2)}}{s} \qquad I \text{ sheet}$$

$$\rho(s, m_1, m_2) = i \frac{\sqrt{((m_N + m_\eta)^2 - s)(s - (m_N - m_\eta)^2)}}{s} \qquad II \text{ sheet}$$

We search for

$$Im \ det(I - i\rho K) \prod_{\alpha} (M_{\alpha}^2 - s) = 0$$
$$Re \ det(I - i\rho K) \prod_{\alpha} (M_{\alpha}^2 - s) = 0$$

For BW approximation (1pole K-matrix)

$$det(I - i\rho K)(M_{\alpha}^2 - s) = M_{\alpha}^2 - s - i\sum_i g_i^2 \rho_i$$

Two poles one channel (πN) K-matrix

Calculation of the residues

For any function of complex variables F(s):

$$\oint ds F(s) = \sum_{\alpha} 2\pi i \operatorname{Res}_{\alpha}$$

This does not depend on the form of counter.

K-matrix amplitude A_{ij} , full factorization:

$$\oint ds A_{ij}(s) = 2\pi i \ g_i g_j$$

In our article:

$$A_{BW} = \frac{X}{M_{BW}^2 - s - i\beta \sum_i g_i^2 \rho_i}$$

where M_{BW} and β are fitted to reconstruct pole position.

The fitted reactions. Recently included data sets. New points added

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$\sigma(\gamma \mathbf{p} \!\rightarrow\! \mathbf{p} \pi^0)$	1106	1.27	CB-ELSA	$\sigma(\gamma \mathrm{p} \!\rightarrow\! \mathrm{p} \pi^0)$	861	1.74	GRAAL
$\sigma(\frac{3}{2} - \frac{1}{2})(p\pi^0)$	140	1.41	A2GDH	$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^0)$	1 492	3.38	SAID
$\mathrm{P}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0})$	607	3.16	SAID	$T(\gamma p \rightarrow p \pi^0)$	389	4.01	SAID
${ m H}(\gamma { m p}\! ightarrow\!{ m p}\pi^0)$	71	1.92	SAID	$G(\gamma p \rightarrow p \pi^0)$	75	2.58	SAID
$Ox(\gamma p \rightarrow p\pi^0)$	7	1.01	SAID	$Oz(\gamma p \rightarrow p\pi^0)$	7	0.38	SAID
$\sigma(\gamma \mathbf{p} \rightarrow \mathbf{n}\pi^+)$	1583	1.87	SAID	$\sigma(\gamma \mathrm{p} \rightarrow \mathrm{n}\pi^+)$	408	2.09	A2GDH
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{n} \pi^+)$	899	4.23	SAID	$\sigma(\frac{3}{2}-\frac{1}{2})(n\pi^{+})$) 231	2.49	A2GDH
$P(\gamma p \rightarrow n\pi^+)$	252	3.90	SAID	$T(\gamma p \rightarrow n\pi^+)$	661	3.66	SAID
$H(\gamma p \rightarrow p \pi^0)$	71	1.92	SAID	$ m G(\gamma p \! ightarrow \! p \pi^0)$	75	2.58	SAID
$S_{11}(\pi N \rightarrow \pi N)$	126	1.40	SAID	$P_{11}(\pi N \rightarrow \pi N)$	110	2.24	SAID
$P_{13}(\pi N \rightarrow \pi N)$	108	2.57	SAID	$P_{33}(\pi N \rightarrow \pi N)$	130	4.56	SAID
$D_{33}(\pi N \rightarrow \pi N)$	136	4.51	SAID	$D_{13}(\pi N \rightarrow \pi N)$	106	5.06	SAID
$\sigma(\gamma \mathbf{p} \!\rightarrow\! \mathbf{p} \eta)$	667	0.92	CB-ELSA	$\sigma(\gamma \mathbf{p} \!\rightarrow\! \mathbf{p} \eta)$	100	2.72	TAPS
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \eta)$	51	2.06	GRAAL 98	$\Sigma(\gamma \mathbf{p} \rightarrow \mathbf{p}\eta)$	100	2.01	GRAAL 04
$T(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \eta)$	50	1.52	Phoenics	$\sigma(\pi^-p\! ightarrow\!n\eta)$	288	2.76	CBALL+Richards

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.22	CLAS	$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.29	CLAS
$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.53	CLAS	$C_z(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.19	CLAS
$\sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	1377	1.80	CLAS	$\sigma(\gamma \mathrm{p} \rightarrow \Sigma^0 \mathrm{K}^+)$	1280	2.68	CLAS
$P(\gamma p \rightarrow \Lambda K^+)$	202	2.31	CLAS	$P(\gamma p \rightarrow \Sigma^0 K^+)$	95	1.56	CLAS
$\Sigma(\gamma p \rightarrow \Lambda K^+)$	66	2.70	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	42	0.67	GRAAL
$\Sigma(\gamma p \rightarrow \Lambda K^+)$	45	1.75	LEP	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	1.03	LEP
$T(\gamma p \rightarrow \Lambda K^+)$	66	2.11	GRAAL	$\sigma(\gamma \mathrm{p} \rightarrow \Sigma^+ \mathrm{K}^0)$	48	3.36	CLAS
$Ox(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.40	GRAAL	$\sigma(\gamma \mathrm{p} \rightarrow \Sigma^+ \mathrm{K}^0)$	160	0.95	CB-ELSA
$Oz(\gamma \mathrm{p} \! \rightarrow \! \Lambda \mathrm{K}^+)$	66	1.86	GRAAL	$P(\gamma p \rightarrow \Sigma^+ K^0)$	72	0.72	CB-ELSA
$\sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \pi^0)$	CB-I	ELSA (1	.4 GeV)	$E(\gamma p \rightarrow p \pi^0 \pi^0)$	16	2.08	MAMI
$\sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \eta$)	CB-I	ELSA (3	.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \eta)$	180	2.68	GRAAL
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0}$)	CB-I	ELSA (3	.2 GeV)	$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0})$	128	0.85	GRAAL
$\sigma(\pi^- p \!\rightarrow\! K\Lambda)$	479	1.55	RAL	$P(\pi^- p \rightarrow K\Lambda)$	261	1.76	RAL+ANL
$\sigma(\pi^+ p \!\rightarrow\! K^+ \Sigma)$	609	1.91	RAL	$P(\pi^+ p \!\rightarrow\! K^+ \Sigma)$	420	2.74	RAL

The fitted reactions. Recently included data sets.

 $\gamma p \rightarrow \pi^0 p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV) $\Delta(1232)P_{33}$ \mathbf{E}_{γ} [GeV] σ_{tot} [µb] $N(1520)D_{13} S_{11}$ ____1 <u> 1.5 2</u> 0.5 2.5 500 $N(1680)F_{15}$ $\Delta(1700)D_{33}$ 100 $\Delta(1920)P_{33}$ Non-resonance contributi-3/2 10 t-channel $\rho - \omega$ exchange, 5/2 1/2⁻ u-exchange and nonresonance production in

 $J^P=3/2^+ \ {\rm wave}$

on:

${ m N}\pi ightarrow { m N}\pi$, P_{33} Wave (3 pole 4 channel K-matrix)

The Δ -states decaying into $K\Sigma$ can be fixed from the $\pi^+ \to K^+\Sigma$ data. The main contribution comes from $P_{33}(1920)$ -red curves and $F_{37}(1900)$ - blue curves.

The recoil asymmetry for the $\pi^+p \to K\Sigma$ reaction. also shows a clear contribution

The multipoles for single pion production. Red - real part, Blue - imaginary part. Solid

$\gamma p ightarrow \eta p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV)

Main resonance contribu-

tions: $N(1535)S_{11}$ $N(1650)S_{11}$ $N(1720)P_{13}$ new $N(2070)D_{15}$

Non-resonance contribution: reggezied t-channel $\rho - \omega$ exchange.

No evidence for third $N(1800)S_{11}$

The data on $\pi^- p \to \eta n$ and the target asymmetry $\gamma p \to \eta p$ fix the position and couplings of $P_{11}(1710)$ state and reduce ηN coupling of the $P_{13}(1720)$ state.

Observable $N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$		Observable $N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$	
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 667	0.92 (0.85)	CB-ELSA	$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 100	2.72 (1.97)	TAPS
$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 51	2.06 (1.81)	GRAAL 98	$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 100	2.01 (1.43)	GRAAL 04

The target asymmetry $\gamma p \rightarrow \eta p$ data reduce coupling of the $P_{13}(1720)$ state to the ηN channel by factor \sim 1.7.

${ m N}\pi ightarrow { m N}\pi$, S_{11} Wave (2 pole 5 channel K-matrix)

T-matrix poles: $M = 1508^{+10}_{-30}$ MeV, $2 Im = 165 \pm 15$ MeV; $M = 1645 \pm 15$ MeV, $2 Im = 187 \pm 20$ MeV

$\pi^- p \rightarrow n \pi^0 \pi^0$ (Crystal Ball) total cross section

 $\gamma p \rightarrow p \pi^0 \pi^0$ (CB-ELSA) M.Fuchs et al.

PWA corrected cross section and contributions from $\Delta(1232)\pi$ (dashed) and $N\sigma$ (dashed-dotted) final states.

Contributions from D_{33} (dotted), P_{11} (dashed) and D_{13} (dashed-dotted) partial waves. The $\gamma p \rightarrow \pi^0 \pi^0 p$ differential cross section for the total energy region.

The total cross section for the $\pi^-p \to K\Lambda$ reaction also shows a clear contribution

The same result was obtained before by the Giessen group:

V. Shklyar, H. Lenske, and U. Mosel, May 2005.

The differential cross section for the $\pi^-p\to K\Lambda$ reaction. also shows a clear

The recoil asymmetry for the $\pi^-p \to K\Lambda$ reaction. also shows a clear contribution

Bonn-Gatchina partial wave analysis JLab Newport News, July 2009

T-matrix poles: $M = 1368 \pm 7$ MeV, $2 Im = 190 \pm 10$ MeV; $M = 1685 \pm 20$ MeV, $2 Im = 160 \pm 45$ MeV $M = 1870 \pm 30$ MeV, $2 Im = 280 \pm 80$ MeV Position of zeros, for the determinant $(I - i\rho K)^{-1}$. Red points - real part and Green points -imaginary part.

Properties of $N(1440)P_{11}$. The left column lists mass, width, partial widths of the Breit-Wigner resonance; the right column pole position and squared couplings to the final state at the pole position.

Μ	=	$1436 \pm 15\mathrm{MeV}$	$M_{ m pole}$	=	$1371\pm7\mathrm{MeV}$		
Γ	=	$335\pm40\mathrm{MeV}$	$\Gamma_{\rm pole}$	=	$192\pm20{\rm MeV}$		
$\Gamma_{\pi N}$	=	$205\pm25\mathrm{MeV}$	$g_{\pi N}$	=	$(0.51 \pm 0.05) \cdot e^{-i\pi \frac{(35\pm 5)}{180}}$		
$\Gamma_{\sigma N}$	=	$71\pm17{ m MeV}$	$g_{\sigma N}$	=	$(0.82 \pm 0.16) \cdot e^{-i\pi \frac{(20\pm 13)}{180}}$		
$\Gamma_{\pi\Delta}$	=	$59\pm15\mathrm{MeV}$	$g_{\pi\Delta}$	=	$(-0.57 \pm 0.08) \cdot e^{i\pi \frac{(25\pm 20)}{180}}$		
	T-matrix: $A_{1/2} = 0.055 \pm 0.020{ m GeV} \qquad \phi = (70 \pm 30)^\circ$						

For $\gamma p \to K\Lambda$ and $\gamma p \to K\Sigma$ we have almost complete photoproduction experiment: σ (CLAS, SAPHIR), Σ (GRAAL, LEP), P (CLAS), C_x, C_z (CLAS), T, O_x, O_z (GRAAL). The C_x and C_z data can be explained with $P_{13}(1900)$.

 $\sigma_{tot}(\gamma p \to K^0 \Sigma^+)$ from CB-ELSA

Red line – $P_{13}(1900)$ **Blue line** – $P_{11}(1860)$ (improved P in $K\Lambda$ and $K\Sigma$ data)

The solution is supported by the new GRALL data on $O_x O_z$ and T-observables: an important step to a complete experiment.

${ m N}\pi ightarrow { m N}\pi$, P_{13} Wave (3 pole 8 channel K-matrix)

2nd T-matrix poles: $M = 1960 \pm 20$ MeV, $2 Im = 195 \pm 45$ MeV;

Left panel : contributions from $\Delta(1232)\eta$ (dashed), $S_{11}(1535)\pi$ (dashed-dotted) and $Na_0(980)$ final states.

Right panel: D_{33} partial wave (dashed), P_{33} partial wave (dashed-dotted), $D_{33} \rightarrow \Delta(1232)\eta$ (dotted) and $D_{33} \rightarrow N a_0(980)$ (wide dotted).

 D_{33} -wave: πN , $\Delta(1232)\pi$ (S- and D-waves)), $\Delta(1232)\eta$, $S_{11}(1535)\pi$

Properties of the $\Delta(1920)P_{33}$ and $\Delta(1940)D_{33}$ resonances.

	M_{pole}	Γ_{pole}	M_{BW}	Γ^{BW}_{tot}
$\Delta(1920)P_{33}$	1940 ± 40	350^{+35}_{-55}	1970 ± 35	$5 375 \pm 50$
$\Delta(1940)D_{33}$	1995 ± 30	420 ± 5	$0 2000 \pm 40$	$0 410 \pm 70$
	$\mathrm{Br}_{N\pi}$	$\mathrm{Br}_{\Delta\eta}$	$\mathrm{Br}_{N(1535)\pi}$	$\operatorname{Br}_{Na_0(980)}$
$\Delta(1920)P_{33}$	15 ± 8	18 ± 8	7 ± 4	4 ± 2
$\Delta(1940)D_{33}$	9 ± 4	5 ± 2	2 ± 1	2 ± 1

Parity doublets of N and Δ resonances at high mass region

Glozman suggested a restoration of chiral symmetry in high-mass excitations. Parity doublets must not interact by pion emission and could have a small coupling to πN .

$J = \frac{1}{2}$	$\mathbf{N}_{1/2^+}(2100)^a$ *	${\sf N}_{1/2^-}(2090)^a$ *	$\Delta_{1/2^+}(1910)$ ****	$\Delta_{1/2^{-}}(1900)^{a}$ **
$J = \frac{3}{2}$	${f N}_{3/2^+}(1900)^a$ **	${\sf N}_{3/2^-}(2080)^a$ **	$\Delta_{3/2^+}(1920)^{a}$ ***	$\Delta_{3/2^-}(1940)^a$ *
$J = \frac{5}{2}$	${f N}_{5/2^+}(2000)^a$ **	${\sf N}_{5/2^-}(2200)^a$ **	$\Delta_{5/2^+}(1905)$ ****	$\Delta_{5/2^-}(1930)^{a}$ ***
$J = \frac{7}{2}$	${ m N}_{7/2^+}(1990)^a$ **	$N_{7/2^-}(2190)$ ****	$\Delta_{7/2^+}(1950)$ ****	$\Delta_{7/2^{-}}(2200)^{a}$ *
$J = \frac{9}{2}$	$N_{9/2^+}(2220)$ ****	$N_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^{-}}(2400)^{a}$ **

$J = \frac{3}{2}$	$N_{3/2^+}(1900)$	$N_{3/2}$ (1875)	$\Delta_{3/2^+}(1980)$	$\Delta_{3/2^{-}}(1985)$
$J = \frac{5}{2}$	$N_{5/2^+}(1960)$	$N_{5/2^-}(2070)$	$\Delta_{5/2^+}(1945)$	$\Delta_{5/2^{-}}(1930)$
$J = \frac{7}{2}$	$N_{7/2^+}(1990)$	$N_{7/2}$ -(????)	$\Delta_{7/2^+}(1910)$	$\Delta_{7/2^{-}}(????)$

Holographic QCD (AdS/QCD)

Soft-wall model prediction: $M_{N,L}^2 = 4\lambda^2 \left(N + L + \frac{3}{2}\right)$ 9/2+ 11/2 13/2 M^2 (GeV²) $\Delta_{15/2}^{+}(2950)$ $5/2^{-1}$ 9/2 $\Delta_{7/2}$ +(2390) $11/2^{-1}$ $\Delta_{9/2}^{+}$ +(2300) ∆_{11/2}+(2420) N=0 7/2 Δ_{5/2}⁻(2223) 5/2 ∆_{1/2}+(1910) 9/2 6 Δ_{7/2}-(2200) 7/2 → Δ_{3/2}⁻+(1920) 11/2 9/2 $\Delta_{13/2}^{-}(2750)$ ∆_{5/2}+(1905) 11/2 ∆_{7/2}+(1950) ∆_{1/2}⁻(1620) 1/2 Δ_{5/2}-(2350) 4 $3/2^{+}$ ∆_{3/2}−(1700) N=1 7/2 ∆_{5/2}+(2200) ∆_{9/2}−(2400) Δ_{1/2}⁻(1900) 7/2 ∆_{3/2}+(1232) ∆_{3/2}-(1940) **←** 2 ∆_{5/2}-(1930) $\Delta_{1/2}^{+}(1750)$ ∆_{3/2}+(1600) L+N 0 0 2 3 5 4 $M_{N,L}^2 = 4\lambda^2 \left(N + L + \frac{3}{2}\right) - 2\left(M_{\Delta}^2 - M_N^2\right) \kappa_{gd}$

 κ_{gd} is the fraction of most attractive color-antitriplet isosinglet diquark. κ_{gd} =0 for Δ and N(S=3/2) states, $\frac{1}{2}$ for S = 1/2 ($70SU_6$) and $\frac{1}{4}$ for S = 1/2 ($56SU_6$). Hilmar Forkel and Eberhard Klempt, hep-ph:0810.2959v1

L, S, N	κ_{gd}			Resonance			Pred.
$0, rac{1}{2}$, 0	$\frac{1}{2}$	N(940)				input:	0.94
$0, rac{3}{2}$,0	0	$\Delta(1232)$					1.27
0, $rac{1}{2}$,1	$\frac{1}{2}$	N(1440)					1.40
1, $rac{1}{2}$,0	$\frac{1}{4}$	N(1535)	N(1520)				1.53
1, $rac{3}{2}$,0	0	N(1650)	N(1700)	N(1675)			1.64
1, $rac{1}{2}$,0	0	$\Delta(1620)$	$\Delta(1700)$		L,S,N =0, $rac{3}{2}$,1:	$\Delta(1600)$	1.64
2, $rac{1}{2}$,0	$\frac{1}{2}$	N(1720)	N(1680)		L,S,N =0, $rac{1}{2}$,2:	N(1710)	1.72
1, $\frac{1}{2}$,1	$\frac{1}{4}$	N(????)	N(1875)				1.82
1, $\frac{3}{2}$,1	0	$\Delta(1900)$	$\Delta(1940)$	$\Delta(1930)$			1.92
2, $rac{3}{2}$,0	0	$\Delta(1910)$	$\Delta(1920)$	$\Delta(1905)$	$\Delta(1950)$		1.92
2, $rac{3}{2}$,0	0	N(1880)	N(1900)	N(1990)	N(2000)		1.92
$0, rac{1}{2}$,3	$\frac{1}{2}$	N(2100)					2.03
$3, rac{1}{2}$,0	$\frac{1}{4}$	N(2070)	N(2190)	L,S,N =1, $rac{1}{2}$,2:	N(2080)	N(2090)	2.12
$3, rac{3}{2}$,0	0	N(2200)	N(2250)	L,S,N =1, $rac{1}{2}$,2:	$\Delta(2223)$	$\Delta(2200)$	2.20
4, $rac{1}{2}$,0	$\frac{1}{2}$	N(2220)					2.27
4 , $\frac{3}{2}$, 0	0	$\Delta(2390)$	$\Delta(2300)$	$\Delta(2420)$	L, N=3,1:	$\Delta(2400)$	2.43
5, $\frac{1}{2}$,0	$\frac{1}{4}$	N(2600)			<u> </u>	$\Delta(2350)$	2.57

Summary

- 1. An approach for the combined analysis of the pion and photo induced reaction with two and multi particle final states is developed.
- 2. The combined analysis of more them 65 different reactions helped to identify the properties of known baryons.
- 3. The new data support the two new baryon states observed in hyperon photoproduction $P_{11}(1880)$ and $P_{13}(1900)$.
- 4. The η -photoproduction data reveal the baryon resonance $D_{15}(2070)$.
- 5. The $D_{33}(1940)$ state is needed for the description of the $\gamma p \to \pi^0 \eta p$ data.
- 6. The data on $\pi^- p \to \eta n$ and $\pi^- p \to K^0 \Sigma$ support an existence of $P_{11}(1710)$.
- The spectrum of observed states is in direct contradiction with a classical quark model. The best explanations are chiral symmetry restoration or AdS/QCD soft-wall model.