
Let us consider ππ and KK̄ channels. Then

ρ1(s) =

√
s− 4m2

π

s
ρ2(s) =

√
s− 4m2

K

s

If g22 = 0 the amplitude is one channel amplitude and has the Breit-Wigner form with

ΓM = g21ρ1(M
2). If the g22 > 0 but K-matrix pole is situated much higher then the

second threshold then again the amplitude has the Breit-Wigner form with

ΓM = g21ρ1(M
2) + g22ρ2(M

2).
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Let us assume that pole is situated far from first threshold but close to the second

threshold. Then we can put ρ1(s) = 1 and the pole in amplitude is situated at:

s = M2 − ig21

Let us now increase g2 coupling. On second sheet defined as:

iρ(s) = i

√
s− 4m2

K

s
= i(a− ib) = b+ ia where a > 0, b > 0.

Then in first approximation:

s → M2 − b− i(g21 + a)

On the first sheet:

iρ(s) = i(−a′ + ib′) = −ia′ − b′ where a′ > 0, b′ > 0.

And

s → M2 + b′ − i(g21 − a′)
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Thus, the pole on second sheet moves to KK̄ threshold and became broader. Pole on

the first sheet gets away from KK̄ threshold and up in the complex plane.
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If pole was situated below KK̄ threshold then the closest to physical region sheet is

the first sheet:

iρ(s) = i

√
s− 4m2

K

s
= i(−a+ ib) = −ia− b where a > 0, b > 0.

and then:

s → M2 + b− i(g21 − a)

On the second sheet we have:

iρ(s) = i

√
s− 4m2

K

s
= i(a′ − ib′) = ia′ + b′ where a′ > 0, b′ > 0.

and then:

s → M2 − b′ − i(g21 + a′)

So the pole on first sheet moves to the KK̄ threshold and became a narrow one while

on second sheet pole moves out of KK̄ and down in the complex plane.
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At large KK̄ coupling the amplitude squared |A11|2 became effectively more narrow

due to fast opening of the KK̄ threshold.
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Three body phase volume:

ρ3(s) =

(
√
s−m1)

2∫
(m2+m3)2

ds23
π

ρ(s,
√
s23,m1)MRΓ

R
tot

(M2
R−s23)2+(MRΓR

tot)
2
,

MRΓ
R
tot = ρ(s23,m2,m3)g

2(s23) ,
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Gauge invariance

The result does not depend on shift: for the photon polarization vector:

εαµ → εαµ + χqµ

where qµ is photon momentum and χ is any scalar function.

It means that:

Ã = εαµJµ qµJµ = 0

For real photon:

εαµqµ = 0 qµ = (q0, 0, 0, qz) ε1µ = (0, 1, 0, 0), ε2µ = (0, 0, 1, 0)

Structure of the projection operator for a massive particle:

Oµν =
∑
α

εαµε
α∗
ν = gµν − PµPν

M2
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For photon propagator the projection operator only exist for the interaction

γ(q) +N(k) = N∗(P )

Oγ
µν =

∑
α

εαµε
α∗
ν = gµν −

q⊥µ q
⊥
ν

(q⊥)2
− PµPν

M2

where

q⊥µ = qν

(
gµν − PµPν

M2

)
Therefore:

PµO
γ
µν = 0 qµO

γ
µν = 0

The current conservation:

J̃µ = Oγ
µνJν
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General structure of the single–meson electro-production amplitude in c.m.s. of the

reaction is given by

Jµ= iF1σ̃µ+F2(σ⃗q⃗)
εµijσikj

|⃗k||q⃗|
+iF3

(σ⃗k⃗)

|⃗k||q⃗|
q̃µ+iF4

(σ⃗q⃗)

q⃗2
q̃µ

+iF5
(σ⃗k⃗)

|⃗k|2
kµ+iF6

(σ⃗q⃗)

|q⃗||⃗k|
kµ ,

where q⃗ is the momentum of the nucleon in the πN channel and k⃗ the momentum of the

nucleon in the γN channel calculated in the c.m.s. of the reaction. The σi are Pauli

matrices.

σ̃µ = σµ − σ⃗k⃗

|⃗k|2
kµ µ = 1, 2, 3

q̃µ = qµ − q⃗k⃗

|⃗k||q⃗|
kµ = qµ − z kµ
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The functions Fi have the following angular dependence:

F1(z) =
∞∑

L=0

[LM+
L +E+

L ]P ′
L+1(z)+[(L+1)M−

L +E−
L ]P ′

L−1(z),

F2(z) =
∞∑

L=1

[(L+ 1)M+
L + LM−

L ]P ′
L(z) ,

F3(z) =
∞∑

L=1

[E+
L −M+

L ]P ′′
L+1(z) + [E−

L +M−
L ]P ′′

L−1(z) ,

F4(z) =
∞∑

L=2

[M+
L − E+

L −M−
L − E−

L ]P ′′
L(z) ,

F5(z) =
∞∑

L=0

[(L+ 1)S+
L P ′

L+1(z)− LS−
LP ′

L−1(z)] ,

F6(z) =
∞∑

L=1

[LS−
L − (L+ 1)S+

L ]P ′
L(z)

Here L corresponds to the orbital angular momentum in the πN system, P ′
L(z), P

′′
L(z)

are derivatives of Legendre polynomials z = (k⃗q⃗)/(|⃗k||q⃗|).
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γN interaction

Photon has quantum numbers JPC = 1−−, proton 1/2+. Then in S-wave two states

can be formed is 1/2− and 3/2−.

Then P-wave 1/2+, 3/2+ and 1/2+, 3/2+, 5/2+.

In general case: 1/2−, 1/2+ are described by two amplitudes and higher states by

three amplitudes.

V
(1+)µ
α1...αn = γµiγ5X

(n)
α1...αn , V

(1−)µ
α1...αn = γξγµX

(n+1)
ξα1...αn

,

V
(2+)µ
α1...αn = γνiγ5X

(n+2)
µνα1...αn , V

(2−)µ
α1...αn = X

(n+1)
µα1...αn ,

V
(3+)µ
α1...αn = γνiγ5X

(n+1)
να1...αng

⊥
µαn

, V
(3−)µ
α1...αn = X

(n−1)
α2...αng

⊥
α1µ .

Gauge invariance: εµq1µ = 0 where q1-photon momentum.

εµV
(2±)µ
α1...αn

= C±εµV
(3±)µ
α1...αn

where C± do not depend on angles.
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The functions Fi have the following angular dependence:

F1(z) =
∞∑

L=0

[LM+
L +E+

L ]P ′
L+1(z)+[(L+1)M−

L +E−
L ]P ′

L−1(z),

F2(z) =
∞∑

L=1

[(L+ 1)M+
L + LM−

L ]P ′
L(z) ,

F3(z) =
∞∑

L=1

[E+
L −M+

L ]P ′′
L+1(z) + [E−

L +M−
L ]P ′′

L−1(z) ,

F4(z) =
∞∑

L=2

[M+
L − E+

L −M−
L − E−

L ]P ′′
L(z) ,

F5(z) =
∞∑

L=0

[(L+ 1)S+
L P ′

L+1(z)− LS−
LP ′

L−1(z)] ,

F6(z) =
∞∑

L=1

[LS−
L − (L+ 1)S+

L ]P ′
L(z)

Here L corresponds to the orbital angular momentum in the πN system, P ′
L(z), P

′′
L(z)

are derivatives of Legendre polynomials z = (k⃗q⃗)/(|⃗k||q⃗|).
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For the positive states J = L+ 1/2 (L=n):

Ai+
µ = ū(qN )X(n)

α1...αn
(q⊥)Fα1...αn

β1...βn
V

(i+)µ
β1...βn

(k⊥)u(kN )

F1+
1 = λn P

′
n+1

F1+
2 = λn P

′
n

F1+
3 = 0

F1+
4 = 0

F1+
5 = +λn P

′
n+1

F1+
6 = −λn P

′
n

where

λn =
αn

2n+ 1
(|⃗k||q⃗|)nχiχf χi,f =

√
mi,f + k0i,f

Therefore

E1+
n = M1+

n = S1+
n =

λn

n+1
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The correspondence of the vertices and multipoles (J = n+ 1
2 ):

E M S

V 1+
n

λn

n+1
λn

n+1
λn

n+1

V 2+
n

λn

n+1 − λn

n(n+1)
λn

n+1

V 3+
n ξn 0 −ξn

n+2
n+1

V 1−
n − ζn+1

n+1
ζn+1

n+1 − ζn+1

n+1

V 2−
n −∆n 0 −∆n

2n2

n+1

V 3−
n −ϱn−1 0 ϱn−1

n−1
n

λn = αn

2n+1 (|⃗k||q⃗|)
nχiχf ∆n =

αn

n(n+1)2
(|⃗k||q⃗|)n+1χiχf

ζn = αn

n (|⃗k||q⃗|)nχiχf ϱn =
αn

(n+1)(n+2)
|⃗k|n|q⃗|n+2χiχf

ξn = αn

(n+2)(n+1) |⃗k|
n+2|q⃗|nχiχf
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γ (q) π+ (k1)

ρ−  (k2)
p n

Jµ=εµναβk1νk2αqβ

γ π+

π−

p n

γ π+

p
p n

qµ

[
(q − pπ)

µq̂γ5

t−m2
π

− 2mNγ5 p̂s +mN

s−m2
N

γµ

]
= 0
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Partial wave amplitude:
transition amplitude with fixed initial and final states

Quantum numbers: mesons IG JPC , baryons: IJP , decay LS basis: 2S+1LJ

IG1
1 JP1C1

1 +IG2
2 JP2C2

2

(
2S+1LJ

)
→ IGJPC → I ′1

G′
1J ′

1
P ′

1C
′
1+I ′2

G′
2J ′

2
P ′

2C
′
2

(
2S′+1L′

J

)
G = G1G2 G = G′

1G
′
2

P = P1P2(−1)L P = P ′
1P

′
2(−1)L

′

|I1 − I2| < I < I1 + I2 |I ′1 − I ′2| < I < I ′1 + I ′2

|J1 − J2| < S < J1 + J2 |J ′
1 − J ′

2| < S′ < J ′
1 + J ′

2

|S − L| < J < S + L |S′ − L′| < J < S′ + L′

A(s, t) = Vµ1...µn
(S,L)Pµ1...µn

ν1...νn
V ′
ν1...νn

(S′, L′)A(s)

n = J mesons n = J − 1/2 baryons
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In momentum representation the particle with spin J (n = J ):

Ψµ1...µn =
1√
2p0

uµ1...µne
ipx

The spinor function uµ1...µn satisfies:

p2uµ1µ2...µn = m2uµ1µ2...µn

pµiuµ1µ2...µn = 0

gµiµjuµ1µ2...µn = 0

uµ1...µi...µj ...µn = uµ1...µj ...µi...µn

These conditions are the main basis for construction of projection operators.
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1 Boson projection operators

In momentum representation:

Pµ1µ2...µn
ν1ν2...νn

= (−1)nOµ1µ2...µn
ν1ν2...νn

=
2n+1∑
i=1

u(i)
µ1µ2...µn

u(i)∗
ν1ν2...νn

The projection operator can depends only on the total momentum and the metric tensor.

For spin 0 it is a unit operator. For spin 1 the only possible combination is:

Oµ
ν = g⊥µν = gµν − pµpν

p2

The propagator for the particle with spin S > 2 must be constructed from the tensors

g⊥µν : this is the only combination which satisfies:

pµg
⊥
µν = 0.

Then for spin 2 state we obtain:

Oµ1µ2
ν1ν2

=
1

2
(g⊥µ1ν1

g⊥µ2ν2
+ g⊥µ1ν2

g⊥µ2ν1
)− 1

3
g⊥µ1µ2

g⊥ν1ν2
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Recurrent expression for the boson projector operator

Oµ1...µL
ν1...νL

=
1

L2

 L∑
i,j=1

g⊥µiνj
O

µ1...µi−1µi+1...µL

ν1...νj−1νj+1...νL
−

4

(2L− 1)(2L− 3)

L∑
i<j,k<m

g⊥µiµj
g⊥νkνm

Oµ1...µi−1µi+1...µj−1µj+1...µL
ν1...νk−1νk+1...νm−1νm+1...νL


Normalization condition:

Oµ1...µL
ν1...νL

Oν1...νL
α1...αL

= Oµ1...µL
α1...αL
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Orbital momentum operator

The angular momentum operator is constructed from momenta of particles k1, k2 and

metric tensor gµν .

For L = 0 this operator is a constant: X0 = 1

The L = 1 operator is a vector X
(1)
µ , constructed from: kµ = 1

2 (k1µ − k2µ) and

Pµ = (k1µ + k2µ). Orthogonality:∫
d4k

4π
X(1)

µ1
X(0) =

∫
d4k

4π
X(n)

µ1...µn
X(n−1)

µ2...µn
= ξPµ1 = 0

Then:

X(1)
µ Pµ = 0 X(n)

µ1...µn
Pµj = 0

and:

X(1)
µ = k⊥µ = kνg

⊥
νµ; g⊥νµ =

(
gνµ − PνPν

p2

)
;

in c.m.s k⊥ = (0, k⃗)
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∫
d4k

4π
X(n)

µ1...µn
X(n−2)

µ3...µn
= βg⊥µ1µ2

= 0

The orthogonality and symmetry properties can be written as the set of

following conditions:

1. X
(n)
µ1...µi...µj ...µn = X

(n)
µ1...µj ...µi...µn (symmetry)

2. Pµi
X

(n)
µ1...µi...µn = 0 (P -orthogonality)

3. gµ1µ2X
(n)
µ1µ2...µn = 0 (tracelessness)

For low orbital momenta:

X0 = 1 ; X1
µ = k⊥

µ ; X2
µν =

3

2

(
k⊥
µ k⊥

ν − 1

3
k2
⊥g

⊥
µν

)
;

X3
µνα =

5

2

[
k⊥
µ k⊥

ν k⊥
α − k2

⊥
5

(
g⊥µνk

⊥
α + g⊥µαk

⊥
ν + gναk

⊥
µ

)]
,
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Recurrent expression for the orbital momentum operators X
(n)
µ1...µn

X(n)
µ1...µn

=
2n−1

n2

n∑
i=1

k⊥
µi
X(n−1)

µ1...µi−1µi+1...µn
− 2k2

⊥
n2

n∑
i,j=1
i<j

gµiµjX
(n−2)
µ1...µi−1µi+1...µj−1µj+1...µn

Taking into account the traceless property of X(n) we have:

X(n)
µ1...µn

X(n)
µ1...µn

= α(n)(k2
⊥)

n α(n) =

n∏
i=1

2i− 1

i
=

(2n− 1)!!

n!
.

From the recursive procedure one can get the following expression for
the operator X(n):

X(n)
µ1...µn

= α(n)

[
k⊥
µ1
k⊥
µ2

. . . k⊥
µn

− k2
⊥

2n− 1

(
g⊥µ1µ2

k⊥
µ3

. . . k⊥
µn

+ · · ·
)

+

k4
⊥

(2n− 1)(2n− 3)

(
g⊥µ1µ2

g⊥µ3µ4
k⊥
µ5

· · · kµ4 + · · ·
)
+ · · ·

]
.
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Scattering of two spinless particles

Denote relative momenta of particles before and after interaction as q and k,

correspondingly. The structure of partial–wave amplitude with orbital momentum

L = J is determined by convolution of operators X(L)(k) and X(L)(q):

AL = BWL(s)X
(L)
µ1...µL

(k)Oµ1...µL
ν1...νL

X(L)
ν1...νL

(q) = BWL(s)X
(L)
µ1...µL

(k)X(L)
µ1...µL

(q)

BWL(s) depends on the total energy squared only.

The convolution X
(L)
µ1...µL(k)X

(L)
µ1...µL(q) can be written in terms of Legendre

polynomials PL(z):

X(L)
µ1...µL

(k)X(L)
µ1...µL

(q) = α(L)

(√
k2⊥

√
q2⊥

)L

PL(z) ,

z =
(k⊥q⊥)√
k2⊥
√
q2⊥

α(L) =
L∏

n=1

2n− 1

n
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Angular dependence of |AL|2 for J = L = 0, 1, 2, 3 states.
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Structure of fermion propagator
The orthogonality condition has a different form in a fermion case:∫

Ψµ(x)Ψ
∗(x)d4x = A pµ +B γµ = 0

where A and B are matrices in spinor space.

It means that we have an additional condition:

γµΨµ = 0 γµuµ = 0 Ψµ =
1√
2p0

uµe
ipx

γ0 = β =

 I 0

0 −I

 , γ⃗ = βα⃗ =

 0 σ⃗

−σ⃗ 0

 , γ5 =

 0 −I

−I 0


Here σ⃗ are 2× 2 Pauly matrices:

σ1 =

 0 1

1 0

 σ2 =

 0 −i

i 0

 σ3 =

 1 0

0 −1


26



u(i) =
1√

p0 +m

 (p0 +m)ω(i)

(p⃗σ⃗)ω(i)

 ω(1) =

 1

0

 ω(2) =

 0

1


ū(i) =

(
(p0 +m)ω(i)∗,−(p⃗σ⃗)ω(i)∗)

√
p0 +m

Summing over polarizations we obtain:

2∑
i=1

u(i)ū(i) = m+ p̂ p̂ = pµγµ

Orthogonality conditions for J = n+ 1
2 spinors:

(p̂−m)uµ1...µn = 0 p̂ = pµγµ

pµiuµ1...µn = 0

uµ1...µi...µj ...µn = uµ1...µj ...µi...µn

gµiµjuµ1...µn = 0

γµiuµ1...µn = 0
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These properties define structure of the fermion projection operator Pµ1...µn
ν1...νn

:

Gµ1...µn
ν1...νn

= (−1)n
m+ p̂

m2 − p2
Fµ1...µn
ν1...νn

The boson projector operator projects any operator to one which satisfies all boson

properties. It means that we can write:

Fµ1...µn
ν1...νn

= Oµ1...µn
α1...αn

Tα1...αn

β1...βn
Oβ1...βn

ν1...νn

T-operator should be constructed from the metric tensor and γ-matrices.

γαiγαj =
1

2
gαiαj

+ σαiαj
, where σαiαj

=
1

2
(γαi

γαj
− γαj

γαi
)

γαiγαjO
...αi...αj ...
β1β2...

= 0

Therefore, the only nonzero structure is:

Oµ1µ2...
α1α2...γαiγβjO

β1β2...
ν1ν2...
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Then:

Fµ1...µn
ν1...νn

= Oµ1...µn
α1...αn

Tα1...αn

β1...βn
Oβ1...βn

ν1...νn

Tα1...αn

β1...βn
=

n+ 1

2n+1

(
gα1β1 −

n

n+1
σα1β1

) n∏
i=2

gαiβi

J = 1/2 P = 1

J = 3/2 Pµ
ν =

1

2

(
g⊥µν − γ⊥

µ γ⊥
ν /3

)
where γ⊥

µ = g⊥µνγν .
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πN interaction

Pion has quantum numbers JPC = 0−+, proton 1/2+. Then in S-wave the only state

can be formed is 1/2−. P-wave can form two states 1/2+ and 3/2+.

In PDG review, states are defined by quantum numbers from the πN decay: L2I,2J . For

example D13 means 3/2− N∗ state.

States with J = L− 1/2 are called ’–’ states (1/2+, 3/2−,5/2+,. . .) and states with

J = L+ 1/2 are called ’+’ states (1/2−, 3/2+,5/2−,. . .).

For ’+’ states:

N+
µ1...µn

= X(n)
µ1...µn

and for ’-’ states:

N−
µ1...µn

= iγνγ5X
(n+1)
νµ1...µn

AπN = ū(k1)N
∗±
µ1...µn

Fµ1...µn
ν1...νn

(P )N±
ν1...νn

u(q1)BW±
n
n+1

(s)
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In c.m.s. of the reaction

AπN = ω∗ [G(s, t) +H(s, t)i(σ⃗n⃗)]ω′ ni =
1

|⃗k||q⃗|
ϵijmkjqm ,

G(s, t) =
∑
L

[
(L+1)F+

L (s)− LF−
L (s)

]
PL(z) ,

H(s, t) =
∑
L

[
F+
L (s) + F−

L (s)
]
P ′
L(z) .

F+
L = (−1)L+1(|⃗k||q⃗|)L√χiχf

α(L)

2L+1
BW+

L (s) ,

F−
L = (−1)L(|⃗k||q⃗|)L√χiχf

α(L)

L
BW−

L (s) .

χi = mi + ki0 α(L) =

L∏
l=1

2l − 1

l
=

(2L− 1)!!

L!
.
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NN - scattering

Transition of two baryons with momenta p1 and p2 into two baryons with p′1 and p′2,

s = (p1 + p2)
2 = (p′1 + p′2)

2, k = p1 − p2, k′ = p′1 − p′2. Two baryons with JP = 1
2

+

can have spin states S = 0, 1.

A =
(
ū(p′1)V

S′,L′

µ1...µJ
(k′⊥)u

c(−p′2)
)
Oµ1...µn

ν1...νn

(
ūc(−p2)V

S,L
ν1...νJ

(k⊥)u(p1)
)
Apw(s) .

uc
j(−p) = CūT

j (p) C = γ2γ0 =

(
0 −σ2

−σ2 0

)
Vertex operators:

V 0,L
µ1...µJ

= iγ5X
(J)
µ1...µJ

(k⊥) V 1,L<J
µ1...µJ

= γµ1X
(n−1)
µ2...µJ

(k⊥)

V 1,L=J
µ1...µJ

= εµ1ηξγγηX
(J)
ξµ2...νJ

(k⊥)Pγ V 1,L>J
µ1...µJ

= γαXαµ1...µJ (k
⊥)
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2 The cross section for photoproduction processes

The differential cross section for production of two or more particles has the form:

dσ =
(2π)4|A|2

4
√
(k1k2)2 −m2

1m
2
2

dΦn(k1 + k2, q1, . . . , qn) ,

where k1 and k2 are momenta of the initial particles (nucleon and γ in the case of

photoproduction) and qi are momenta of final state particles. The

dΦn(k1 + k2, q1, . . . , qn) is the element of the n-body phase volume given by

dΦn(k1 + k2, q1, . . . , qn) = δ4(k1 + k2 −
n∑

i=1

qi)
n∏

i=1

d3qi
(2π)32q0i

.

The photoproduction amplitude can be written as

A = εµūiAµuf ,

where εµ is the γ polarization vector and ūi and uf are the bispinors of the initial and

final state nucleon.
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If particle polarizations are not known the amplitude squared is summed over

polarizations of final particles and averaged over polarization of initial particles.

|A|2 =
1

4

∑
αjm

Tr
[
ε∗αµ εαν ū

(j)
i A∗

µu
(m)
f ū

(m)
f Aνu

(j)
i

]
,

2∑
i=1

u(i)(k1)ū
(i)(k1) = m+ k̂1 → (m+ k̂1)

(
1− iγ5Ŝ

)
In the case of photon with momentum directed along z-axis

ε1µ = (0; 1, 0, 0) ε2µ = (0; 0, 1, 0)

For non-polarized case:

1

2

∑
α

ε∗αν εαµ =
1

2


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


Polarization

along y axis

−→


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 .
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Single meson photoproduction
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1) Meson-meson scattering:

only one observable is measured

2) The πN elastic scattering:

3 observables should be measured for

a complete experiment.

3) Meson photoproduction experiment:

8 observables should be measured for

a complete experiment.
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The resonance amplitudes for meson photoproduction

)1u(k

)2 (k∈ 3q

)1(qu

π π p → π 2 R→ 1 R→ p γ

2R

(L, S) )
2 Rπ, S

2 Rπ(L

2q

1R

The general form of the angular dependent part of the amplitude:

ū(q1)Ñα1...αn(R2→µN)Fα1...αn
β1...βn

(q1 + q2)Ñ
(j)β1...βn
γ1...γm

(R1→µR2)

F γ1...γm
ξ1...ξm

(P )V
(i)µ
ξ1...ξm

(R1→γN)u(k1)εµ

Fµ1...µL
ν1...νL (p) = (m+p̂)Oµ1...µL

α1...αL

L+ 1

2L+1

(
g⊥α1β1

− L

L+1
σα1β1

) L∏
i=2

gαiβiO
β1...βL
ν1...νL

σαiαj =
1

2
(γαiγαj − γαjγαi)

36


