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1 Unitarity and analyticity of the scattering amplitude

The scattering matrix is unitary.

Sip =< i|S|f > Y Im><m|=1

m

Then

D Pri=1=> |<m|Sli> =) <ilST|m><m|Sli >=<i[ST5]i >

This must be true for any state |¢ > we have:

STS=1=S58"

In two body case:

2

d3q;

/H 3z < Pip5|Sla192 >< q1g2| ST |p1p2 >=< pipslpipe >
i=1 2(27‘-) qoq



Let us introduce the scattering amplitude
Spi=1+2m1i 6Py — P;)Agi(s,t)
Then for amplitude A:

i(< fIAT|i >—< flAli >)= %AEZM —pi) < flAln >< n|AT|i >

¢ - _ @ - _¢ O

For identical initial and final states one has:

2Im < i|Ali >= (2m)* 2(54 —p;) <i|An >< n|AT|i >



2 Partial wave amplitudes

Let us consider 2 — 2 scattering amplitude of two spinless particles. In the c.m.s. of

two particle system:

A(s,t) = 16m i(% + 1) Pi(2)A(s)
=0

If particles has the equal mass m then:

t = (p} —p1)? =2m* — 2p(ipo1 + 2|9 ||p]=

;L _\/§ S e s — 4m?
Po1—p01——2 \p|—\ﬁ1—\/ s
Then:
1d
1 A 2t
A = —— —A(s.t)P — 4m? —
(5) 167T/ 2 (5:8) Pr.(2) ’ " 1 -2



The unitarity equation is valid for every partial wave and has a very simple form.

1

g 7@ [a

0 —1

167 (20 + 1)(Aly(5) — A () A=) = 4
[

> @+ )AL ()P ()Y (20" + 1) AL (s) P (27)]

l/ l//

where:

2 = cos ® 2 = cos® 2" = cos ©"

cos® = cosOcos®’ + sinOsin®” sin ®

Using orthogonality condition of the Legendre functions we obtain:

41\q .
Aly(s) - aly = 1AL )75



In the matrix form:
ImA! = p(s)Al(s) A (s)
Here p(s) is the diagonal matrix of the phase volumes:

p1(s) 0 ol
p(s) = 0 pa(s) ... pi(s) = TQS

It is also useful to introduce a partial wave S-matrix:
S =T+ 2ip(s)A(s)

Then the unitarity condition reads:

STS =88t =1
For one channel case:
S:€2@'6 A 621'5_1
2ip(s)



3 Singularities of the scattering amplitude

Analyticity means that:
1) Amplitude is a Lorentz scalar, and can be written as function of scalars.

2) Amplitude has only singularities which are demanded by the unitarity condition. It
means also that if there is no singularities inside a integration counter, then:

ds
/ T(s)— =0
T
C
Threshold singularities in this case are defined by the phase volume functions. The
lowest one (in energy scale) is the two body threshold singularity.

d3 k1 d>ko
<27T>32]€10 (27’(’)32]{20

dD(P; ky, ko) = (2m) 26 (P — k1 — ko)

and:

olk) = 2 / WB(Pikyks)  plk) = — f‘w
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If particles interact via exchange of a particle with mass u then in t-channel A(s, t) has
apole att = p2.
1

A(s) = / %A(s,t)PL(z) s = 4m* —

—1

2t
1— 2z

Left-hand side singularity defined by the pole singularity in t-channel:

z=—1 s = 4m? — 2,

z = +1 S — —00

Then we obtain the following picture of the singularities:

<mw+m2>2*<mﬁb>2 ( >2 (mefszme)Z
M+,
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4 K -matrix representation of the scattering amplitude

The unitarity condition for the partial wave amplitude is:

SSt =1 S =1+ 2ip(s)A(s)

Then in the case of a Breit-Wigner resonance we have:

MT
M? — s —ip(s)MT

A(s) =

How to construct an amplitude in the case of two Breit-Wigner states? The sum of two
Breit-Wigner states clearly violates unitarity condition:

o erl 4 M2F2 -
- MZ2—s—ip(s)MI'y  M2—s—ip(s)M;I'y
erl(MQQ—S) -+ MQI’Q(Mf—s)—2ip(s)M1M2F1F2

A(s)

(M3?—3s)(Mz—s)—ip(s) (M1 (M3 —s) + MaTo(ME—s)—ip(s) M MTT)



One way to fulfill the unitarity condition is to introduce an approach which conserved
unitarity from the beginning. Let us write:

I .A["( N ~
§— PR 9i5A(s), A(s) = K(I —ipK)™!
I —1pK

Where K is a real matrix.
Can one obtain the K-matrix from basic principles only?

1. The amplitude is symmetrical for transition between final states, thus / -matrix
must be also symmetrical.

2. One should not use divergent functions as well as poles of more then first order.

3. The amplitude must have pole singularities not more then first order.
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Let us construct two channel one pole K-matrix. The expression like

G Go
K = M?2—s M?2—s
Go G's

M?2—s M?2—s

The amplitude has only first order poles if
G1G3 = G2

Thus we obtain factorization property of the K-matrix:

(o) ()
Kab=< Ja_9b +fab>, fab = Foa

2 _
— Mg —s
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5 Property of the K-matrix amplitude in special cases

5.1 Two channel one pole K-matrix: Flatté parameterization

The amplitude for transition between two channels described by one pole K-matrix has

the following form:

91291 .91292
. -1 M=—s M=—s
A - K(I B Zp(S)K) K - g2491 g24g2
M?2—s M?2—s
And:
y 93
1= 2 2
M? — s —ip1(s)gy — ip2(8)g3
Ay = g192
M2 — s —ipi(s)gi — ip2(s)g3
g2492
A22 — ) 9
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1) K-matrix approach satisfies the unitarity condition. It takes into account right-hand
side singularities of the amplitude: threshold singularities (cuts) and pole singularities

2) K-matrix satisfies the analyticity condition. The amplitude has a property that counter

integral equal to zero if it has no singularities inside the counter.

3) K-matrix has the direct connection with field theory approach ...

However:

This approach does not take into account right-hand cut singularities (connected with

the real part of loop diagrams) and therefore is not fully reliable at very low energies.
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Complete overlapping of resonances: effect of accumulation of resonance width

Here we consider an example which describes a situation with mixing of completely
overlapping resonances. This example demonstrates the effect of width accumulation
by one of resonances.

Let us consider one channel case and a resonance situated far from threshold. Then we
can neglect the s-dependence of phase space factor. Then:

M{ = Mz —iMgl'y, M5 =Mz —iMgIlsy,

In this case we obtain following formula for pole position of the amplitude:

1 1 2
M3 p = 5 (M7 + My) + \/ 7 (—iMET) +iMET2)? + (iMR\/Flrg) _

MJQ% — iMR(Fl + Fg)
2
MR
We see, that as result of mixing, one state accumulates the widths of the both initial
states, ' 4 = I'; 4+ I'5, while another one transforms into a stable particle, I ' 3 = 0.
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Let us consider the example when Re M7 and Re M3 are different but
erl = MQFQ, namely:

M} =Mz, —iMT', M35 = Mz, —iMT,

Then:

1 _ 1
Mg = S(ME + M) — M [ L3, - M,)7 - AT

This equation allows to see dynamics of pole positions with increase of 1. At

2MT < (M3%, — M#%,) ( that corresponds to suppressed mixing), we have two well
spaced poles. Within increasing of 1, the poles are shifted along the real axis each to
other. At 2MT = M?%, — M#,, the pole positions coincide:

1
Mi,B = §<M12%1 + Mpg,) — iMT

With the following increasing of 1', the poles are moving along the imaginary axis. As a
result we have to poles, one above another: at (M7, — M3#,) < 2MT, one state is
nearly stable while the width of another resonance is close to 21I".
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Diagram approach to the calculation of the scattering
amplitude

Let us consider a state which is produced from two interacting particles, then
propagates and decays into same two particles in the final state. The amplitude for such
process can be represented as a sum of the diagrams:

r I, e

The amplitude can be found as direct sum of the diagrams:

1 1

R

A=
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This amplitude also can be found by solving the following equation:

B(s) g
A =A—F"—+ ——
M3—3+M§—S
Mg—sl_% M3 — s — B(s)

Here ) is a bare mass of the state and B(s) is the two body loop diagram:

F d*k 92
b= / i@m)1 (m? — K2)(m? — (P — k)2)’
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Let us assume that the vertex (coupling) g has no singularities and is a smooth function
in the physical region. The imaginary part of the loop diagram appears at the energy

s > 4m?. The discontinuity on the cut can be calculated by substituting propagators by
delta functions (Mandelstam-Cutkosky rule):

(m* — k*)"tH(m? — (P - k)*)™t = (=2m)%i 6(m* — k*)O (ko)
5(777/2 — (P — k)2)@<P0 — ko)

Theninc.m.s. P = (1/5,0):

/ JA12 5(m2 — k)5(m2 — (P — k)?) = / d3k5(2\/§\/m2 IR —s) =

A2 A2

di? |k| _ ~, s —4m? 1 \/3—4m2
— - §(k* — — -
/87T NG ( 4 ) 167 S pLs)

Then loop diagram can be rewritten in the dispersion representation:

o oo

B(s) = / ds’" g(s')p(s')9(s") _ . / ds’ g(s")p(s")g(s")

—_— y 2
™ s —s—10 s s’ —s ip(s)g(s)
4m?2 4m?2
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Let us calculate analytically the loop diagram assuming that g is a constant.

First we need a renormalization:

oo

ds’ g° \/3’ — 4m?
B(s) = B(M? — M?
)= BOP) + (=) [ T [T
4m?2
Such integral is equal to:
2 2
g 1 —p(s) 2 1 — p(M*) : 2
B(s) = ReB(M?) + Z- l — p(M?) 1
(5) = ReB(M?) + —[p(s) " o(s) p(M7) n1+p(M2)]+w(8)g
At s — O:
,\/s—4m2
ip(s) =1 > —00
s
1 “Am?, 2 4m?—
ip(s)(l.—%lnlJrgEzg):i\/s Sm (1—;arctg ms S) > const
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Black curve - BW amplitude, red curve - full B(s) calculation, blue curve - BW amplitude with

reduced width, magenta - dispersion correction of the real part.
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The K-matrix amplitude can be considered as a solution of Bethe-Salpeter equation:

P O O

o0

Aup(s. 5) = / ds' Aqj(s,s")ip;(s") Ku(s') - Kop(s)

T s’ — s —10

4m?2

But ... with omitted real part of loop diagrams:

Aab = Aajipj (S)Kjb + Kab — A = K(I — lﬁK)_l
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Dispersion relation N/ D-method and the K -matrix representation
Let us write a partial wave amplitude A(s) in the form

N (s)

A= 5)

where NN (s) function has only left-hand side singularities of the amplitude and
D-function has only right-hand side singularities. Amplitude poles correspond to zeros

of the D-function and the asymptotical condition is:
N(s) -0 D(s)—1 at s— o
Then from unitarity condition /A = pA™ A we have:

ImD(s) = —p(s)N(s) at s> 4m?

D(S) =1 - B(S) —1— / p(j/)?{(j/) ij
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In the simplest case when N(S) Is a smooth function in the physical region one can
introduce a factorization

N(s)=G(s)G(s) or N(s)=)Y Ga(s)Gals)

and then:
G2

A= 1 — ReB(s) — ipG?(s)

In this case poles appear at Re B(s) = 1. This is a so called dynamical pole. In the
region of this pole we can expand the real part of B(s):

ReB(s) =1+ ReB'(M?)(s — M?)

And obtain:
G?/ReB’'(M?)
M? — s —ipG?(s)/ReB'(M?)

a Breit-Wigner expression with

A=

MT = p(M?*)G*(M?*)/ReB’'(M?)
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The function can be written as a sum of the dispersion diagrams:

[ =2+ >0+ >00¢

A G(s)G(s) G(s)B(s)G(s) G(s)B(s)B(s)G(s)

G2

A= A B(s) + G*(s) A

T 1- ReB(s) —ipG?(s)
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In the two channel case:

. A . N N
A=ND! N= e
Na1  Naa
. . A 1—B —B
ImD=—-pN D= H 2
—B21 1 — Bao

A1 1 1 —Bsy  Bio

A=ND" " =
detD By 1 —Bn
A1s = Ni11Bio+ Nis — N12Bqs
Ao1 = NooBsoy 4+ Nop — Noy Boo
[ ds’ pi(s')Nig (s')
Bij(s) = ,
i(9) /77 s’ —s—10

S4
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The diagram approach to the multi channel amplitudes

E:NI~C s,8) = ZGZ(S)G?Z(S')

Let us introduce the block a;”; , for transition from ¢ to k with fixed last interaction

jk(s) and wothout final vertex GfZ(S)
zk: — Z 'iji

The a%"}k obeys the following equation:

m
zgk E :a”LljBl]kI +5’U kj>

where one loop diagram Bljk is equal to:

Bk (s )_/dS, 1 (8" )G (") p;(s)

s S
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In the matrix form:

1 1 1
/ aiir Q211 ( Gy; O
2 2 2
ai11 4211 G11 0
1 1 1
A191 Q397 0 21
A 2 2 ~ 2
a = 101 Q391 g = 0 21
1 1 1
A112 Q319 G1g 0
2 2 2
A119 04319 G12 0
And the equation is:

Here B is the matrix of functions BZ%’J with dimension M X M, where M is the number
of combinations for j, k, n. If the number of channels is equal to N, then matrix a & ¢
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have dimensions M/ x IN. Then

A

A=¢a=¢I—- B) ',

where ¢’ is matrix NV x M with elements 5ikG§r,’;. Here i is the line number and column

number runs through all combinations j, k, m:

G, Gi, -+ Gy G - 00
g = 0 O .-+ 0 o --- Gi, G%

The unitarity condition

o>

I
N}
>
N )

Im

Y
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5.2 K-matrix poles and ¢q states

Let us consider the amplitude in the case of two final states. In this case we have a set
of diagram equations:



For A, we obtain:

A — Gii({ — Ba2) —G12Bar G — Gi21o
11 = =
(I — B11)({ — Bea) — B1aBa1 (I — B11) — B12To

Where 15, is equal to:

To1 = (I — Bgyy) ' Byy = Boy + ByyBoy + By BogBoy + By BosBoo By + . ..

Then for the amplitude 1 — 1 we obtain the following equation:
A1 = A1 Biy + A1 B12To1 + Gii + G215

If, for example, the channel 2 is the quark-antiquark channel then:

2
G215 = Z Mgga_ :

o
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If real part is smooth we obtain the standard K-matrix expression:

A=K —ipK)™! K= -2 .q,

31



N/D based (D-matrix) analysis of the data

In the case of resonance contributions only we have factorization and Bethe-Salpeter

equation can be easily solved:

mn K
J m J K 3 m Oy
:@: = :@:( — 4+ —
N K
km 1 Ojm S Aoy —1
Djm = Djx ¥ B (S)3—+3p— D=r(I-Bk)
o m J
1 1 1
c=d Ri,R
" mg(Mf—s’Mg—s’ ME - )
~ ds’ g(R)i,O (S Mmia, T2 )g(L)j
B,L — BZéj: (087 (07 9 (o] (07 (074
j=Yom =) [ ey
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For non-resonant transitions from one channel (e.g. 77):

L(N+1)ngR(N—|—1) n gL(N+2)RzgR(N+2)
J ? J

)

where N is the number of pole terms. The non-zero left and right vertices:

1 GeV? + s
FO =y s+ s S gt =1 R =1,
0
L(N+2 R(N+2 1 GeV? + s
91(+):1 j>(1 ):flj Ry =1

S+ Sp

Ab:% a>i@j<b

I L
ZQR( )Rozoz ongb () .
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In the present fits we calculate the elements of the foj using one subtraction taken at
the channel threshold M, = (M1, + Moy ):

ds' g5 po(s', mia, maa ) g8

T (s —s—1i0)(s" — M?2)

B (s) = BY(M2) + (s — M?) /

2
me

In this case the expression for elements of the B matrix can be rewritten as:

Bii(s) = qB)i | p> 4 —M2 / Pa(s's M1, Maq) (L)j _ (R)zB ( )J
o (S) ga, S S g — ZO)(S . MO%) gﬁ g

and D-matrix method equivalent to the K-matrix method with loop diagram with real part

taken into account:

A=K(I - BK)™! Bas = 6apBa
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K-matrix approach

D-matrix approach

e 4
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P-vector approach

Let us consider photoproduction of two pions. This case is different from the w7
scattering by the first interaction:

The first interaction can be the direct production of K-matrix poles or nonresonant
production: vy — 7, vy — K K and so on.
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The vector of the initial interactions can be constructed as:
Apg™h
( Z M29—1 + fl \

P = ZMZQQ +f2

Ak: — ([ /I’IOK)jk;

Here m counts number of K -matrix poles, and indices 1, 2, 3. .. counts channels

(for example 7w, KK, nn ...).

_ A A A,
E:P(O‘)D sgp P P:( R —Fl)
1 1




F’-vector approach, and P D-approach

Production of the weak channels, or many particle final states.

Agp = Fop + [KI — ipK)  iplapFyy

gy Mg
— My —s

Fyp = + dpy

The decay couplings Affc and nonresonant transition from K-matrix channel b to final
channel d; s can be complex numbers.

. - - d
Aap =Fag+ ) 98k aaDapFsy F = (Af{ec, Adec | Adec, RLZ . )
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In the case of weak initial channel:
N N Adec
A= G+ P — ipK)" plawDy, G = Z

All resonance couplings are the same as in P and D-vectors. The direct nonresonant ¢
can be a complex number.

~ d
A= +ZQR(Q)/€aa aﬁFﬁf F = (Acllec7A§lec Adec sz )
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Phase volumes

Two body phase volume:

p(s,mi,mg) = QSk = V(s = (ma + mQ)i)(S — (m1 —ma)?)

Three body phase volume:

(vVs—m1)? R
3 — 9
T (Mp—s23)24(MRgT'}},)

(mo+ms)?

MRIE . = p(s23,m2, m3)g%(s23) ,

~ 02 o 0.2
o o
O 9 1 1 o 01f ,
n scu Q (m2+m3) B
E 02} 4 g o ; :
= 01} PMZ-iM R
-0.4f 2 3 . . .
. o2l AT VB
06 3 0.3F 3
3:1 ,,,,, Zv Y. L 7777777 ﬁ,,,,,,,,‘
-0.8f -0.4f (Vs-m,)?
1416 18 2 22 24 1 1z 14 16 18 2
2
Re's, GeV? Re s,,, GeV
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Pole parameters of the S states

N (1535)S11 N (1650)S11 N (1890)S11
K-matrix D-matrix K-matrix D-matrix K-matrix D-matrix

Mpole 150114 1494 164716 1651 1900+15 1905
T hole 134411 116 10348 95 90*3% 106
Elastic residue 31+4 25 2443 23 111 1.5
Phase -(29+5)° -38° -(75£12)° -62° - —
Res N N1, 28+3 25 15+3 15 442 5
Phase -(7618)° -69° (132£10)° 140 (401+20)° 42°
Res N A~ 714 4 11+3 12 = -
Phase (147£17)° 157° -(30+20)° -40 - —
A2 (Gev™2) | 0.116+0.010 0.107 0.0331-0.007 0.029 0.0121-0.006 0.010
Phase (716)° 1° -(91+15)° 0° 120+50° 150°
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Im M (GeV)

Im M (GeV)

-0.02 L.
-0.045
-0.065
-o.osf
-0.15
-0.125
-0.145
1.2 : f . . f . 1o

-0.055
oaf
-0.155
-0.2

-0.25L

Pole position in the mass complex plane for S;; and P;;.

S11—wave

)
Re M (GeV)

2.2 2.4
Re M (GeV)

42

Trajectories for
Re det(I—ipK) =0
Im det(I —ipK) =0

Re det(I—Br) =0
Im det(I—Bk) =0



