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Partial wave amplitude:
transition amplitude with fixed initial and final states

Quantum numbers: mesons IG JPC , baryons: IJP , decay LS basis: 2S+1LJ

IG1
1 JP1C1

1 +IG2
2 JP2C2

2

(
2S+1LJ

) → IGJPC → I ′1
G′1J ′1

P ′1C′1 +I ′2
G′2J ′2

P ′2C′2
(

2S′+1L′J
)

G = G1G2 G = G′1G
′
2

P = P1P2(−1)L P = P ′1P
′
2(−1)L′

|I1 − I2| < I < I1 + I2 |I ′1 − I ′2| < I < I ′1 + I ′2
|J1 − J2| < S < J1 + J2 |J ′1 − J ′2| < S′ < J ′1 + J ′2
|S − L| < J < S + L |S′ − L′| < J < S′ + L′

A(s, t) = Vµ1...µn(S,L) Pµ1...µn
ν1...νn

V ′
ν1...νn

(S′, L′)A(s)

n = J mesons n = J − 1/2 baryons



Introduction to Bonn-Gatchina partial wave analysis method Jülich 2011 3

In momentum representation the particle with spin J ( n = J ):

Ψµ1...µn =
1√
2p0

uµ1...µneipx

The spinor function uµ1...µn satisfies:

p2uµ1µ2...µn = m2uµ1µ2...µn

pµiuµ1µ2...µn = 0

gµiµj uµ1µ2...µn = 0

uµ1...µi...µj ...µn = uµ1...µj ...µi...µn

These conditions are the main basis for the construction of the projection operators,

which are defined as:

Gµ1µ2...µn
ν1ν2...νn

= Pµ1µ2...µn
ν1ν2...νn

1
p2 −m2
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1 Boson projection operators

In momentum representation:

Pµ1µ2...µn
ν1ν2...νn

= (−1)nOµ1µ2...µn
ν1ν2...νn

=
2n+1∑

i=1

u(i)
µ1µ2...µn

u(i)∗
ν1ν2...νn

The projection operator can depends only on the total momentum and the metric tensor.

For spin 0 it is a unit operator. For spin 1 the only possible combination is:

Oµ
ν = g⊥µν = gµν − pµpν

p2

The propagator for the particle with spin S > 2 must be constructed from the tensors

g⊥µν : this is the only combination which satisfies:

pµg⊥µν = 0.

Then for spin 2 state we obtain:

Oµ1µ2
ν1ν2

=
1
2
(g⊥µ1ν1

g⊥µ2ν2
+ g⊥µ1ν2

g⊥µ2ν1
)− 1

3
g⊥µ1µ2

g⊥ν1ν2
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Recurrent expression for the boson projector operator

Oµ1...µL
ν1...νL

=
1
L2




L∑

i,j=1

g⊥µiνj
O

µ1...µi−1µi+1...µL

ν1...νj−1νj+1...νL
−

4
(2L− 1)(2L− 3)

L∑

i<j,k<m

g⊥µiµj
g⊥νkνm

Oµ1...µi−1µi+1...µj−1µj+1...µL
ν1...νk−1νk+1...νm−1νm+1...νL




Normalization condition:

Oµ1...µL
ν1...νL

Oν1...νL
α1...αL

= Oµ1...µL
α1...αL
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Orbital momentum operator

The angular momentum operator is constructed from momenta of particles k1, k2 and

metric tensor gµν .

For L = 0 this operator is a constant: X0 = 1

The L = 1 operator is a vector X
(1)
µ , constructed from: kµ = 1

2 (k1µ − k2µ) and

Pµ = (k1µ + k2µ). Orthogonality:

∫
d4k

4π
X(1)

µ1
X(0) =

∫
d4k

4π
X(n)

µ1...µn
X(n−1)

µ2...µn
= ξPµ1 = 0

Then:

X(1)
µ Pµ = 0 X(n)

µ1...µn
Pµj = 0

and:

X(1)
µ = k⊥µ = kνg⊥νµ; g⊥νµ =

(
gνµ − PνPν

p2

)
;

in c.m.s k⊥ = (0,~k)
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∫
d4k

4π
X(n)

µ1...µn
X(n−2)

µ3...µn
= βg⊥µ1µ2

= 0

The orthogonality and symmetry properties can be written as the set of

following conditions:

1. X
(n)
µ1...µi...µj ...µn = X

(n)
µ1...µj ...µi...µn (symmetry)

2. Pµi
X

(n)
µ1...µi...µn = 0 (P -orthogonality)

3. gµ1µ2X
(n)
µ1µ2...µn = 0 (tracelessness)

For low orbital momenta:

X0 = 1 ; X1
µ = k⊥µ ; X2

µν =
3

2

�
k⊥µ k⊥ν − 1

3
k2
⊥g⊥µν

�
;

X3
µνα =

5

2

�
k⊥µ k⊥ν k⊥α − k2

⊥
5

�
g⊥µνk⊥α + g⊥µαk⊥ν + gναk⊥µ

��
,
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Recurrent expression for the orbital momentum operators X
(n)
µ1...µn

X(n)
µ1...µn

=
2n−1

n2

nX
i=1

k⊥µi
X(n−1)

µ1...µi−1µi+1...µn
− 2k2

⊥
n2

nX
i,j=1
i<j

gµiµj X(n−2)
µ1...µi−1µi+1...µj−1µj+1...µn

Taking into account the traceless property of X(n) we have:

X(n)
µ1...µn

X(n)
µ1...µn

= α(n)(k2
⊥)n α(n) =

nY
i=1

2i− 1

i
=

(2n− 1)!

n!
.

From the recursive procedure one can get the following expression for
the operator X(n):

X(n)
µ1...µn

=

 
nY

k=1

2k − 1

k

!�
k⊥µ1k⊥µ2 . . . k⊥µn

− k2
⊥

2n− 1

�
g⊥µ1µ2k⊥µ3 . . . k⊥µn

+ · · ·
�

+

k4
⊥

(2n− 1)(2n− 3)

�
g⊥µ1µ2g⊥µ3µ4k⊥µ5 · · · kµ4 + · · ·

�
+ · · ·

�
.
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Scattering of two spinless particles

Denote relative momenta of particles before and after interaction as q and k,

correspondingly. The structure of partial–wave amplitude with angular moment L = J

is determined by the convolution of the operators X(L)(k) and X(L)(q):

AL = BWL(s)X(L)
µ1...µL

(k)Oµ1...µL
ν1...νL

X(L)
ν1...νL

(q) = BWL(s)X(L)
µ1...µL

(k)X(L)
µ1...µL

(q)

BWL(s) is the amplitude which depends on the total energy squared only.

The convolution X
(L)
µ1...µL(k)X(L)

µ1...µL(q) can be written in terms of Legendre

polynomials PL(z):

X(L)
µ1...µL

(k)X(L)
µ1...µL

(q) = αl

(√
k2
⊥

√
q2
⊥

)L

PL(z) ,

z =
(k⊥q⊥)√
k2
⊥

√
q2
⊥

αL =
L∏

n=1

2n− 1
n
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Angular dependence of |AL|2 for J = L = 0, 1, 2, 3 states.
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Structure of fermion propagator

The orthogonality condition has a different form in a fermion case:
∫

Ψµ(x)Ψ∗(x)d4x = A pµ + B γµ

where A and B are matrices in spinor space.

It means that we have an additional condition:

γµΨµ = 0 γµuµ = 0 Ψµ =
1√
2p0

uµeipx

γ0 = β =


 I 0

0 −I


 , ~γ = β~α =


 0 ~σ

−~σ 0


 , γ5 =


 0 −I

−I 0




Here ~σ are 2× 2 Pauly matrices:

σ1 =


 0 1

1 0


 σ2 =


 0 −i

i 0


 σ3 =


 1 0

0 −1



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u(i) =
1√

p0 + m


 (p0 + m)ω(i)

(~p~σ)ω(i)


 ω(1) =


 1

0


 ω(2) =


 0

1




ū(i) =

(
(p0 + m)ω(i)∗,−(~p~σ)ω(i)∗)

√
p0 + m

Summing over positive energy solutions we obtain:

2∑

i=1

u(i)ū(i) = m + p̂

Orthogonality conditions for J = n + 1
2 spinors:

(p̂−m)uµ1...µn = 0 p̂ = pµγµ

pµi
uµ1...µn

= 0

uµ1...µi...µj ...µn = uµ1...µj ...µi...µn

gµiµj uµ1...µn = 0

γµi
uµ1...µn

= 0
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These properties define structure of the fermion projection operator Pµ1...µn
ν1...νn

:

Gµ1...µn
ν1...νn

= (−1)n m + p̂

m2 − p2
Fµ1...µn

ν1...νn

The boson projector operator projects any operator to one which satisfies all boson

properties. It means that we can write:

Fµ1...µn
ν1...νn

= Oµ1...µn
α1...αn

Tα1...αn

β1...βn
Oβ1...βn

ν1...νn

T-operator should be constructed from the metric tensor and γ-matrices.

γαi
γαj

=
1
2
gαiαj

+ σαiαj
, where σαiαj

=
1
2
(γαi

γαj
− γαj

γαi
)

γαiγαj O
...αi...αj ...
β1β2... = 0

Therefore, the only nonzero structure is:

Oµ1µ2...
α1α2...γαi

γβj
Oβ1β2...

ν1ν2...
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Then:

Fµ1...µn
ν1...νn

= Oµ1...µn
α1...αn

Tα1...αn

β1...βn
Oβ1...βn

ν1...νn

Tα1...αL

β1...βL
=

L + 1
2L+1

(
gα1β1 −

L

L+1
σα1β1

) L∏

i=2

gαiβi

J = 1/2 P = 1

J = 3/2 Pµ
ν =

1
2

(
g⊥µν − γ⊥µ γ⊥ν /3

)
where γ⊥µ = g⊥µνγν .
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πN interaction

Pion has quantum numbers JPC = 0−+, proton 1/2+. Then in S-wave the only state

can be formed is 1/2−. P-wave can form two states 1/2+ and 3/2+.

In PDG review, states are defined by quantum numbers from the πN decay: L2I,2J . For

example D13 means 3/2− N∗ state.

States with J = L− 1/2 are called ’–’ states ( 1/2+, 3/2−,5/2+,. . .) and states with

J = L + 1/2 are called ’+’ states ( 1/2−, 3/2+,5/2−,. . .).

For ’+’ states:

N+
µ1...µn

= X(n)
µ1...µn

and for ’-’ states:

N−
µ1...µn

= iγνγ5X
(n+1)
νµ1...µn

AπN = ū(k1)N∗±
µ1...µL

Fµ1...µL−1
ν1...νL−1

(P )N±
ν1...νL

u(q1)BW±
L (s)
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In c.m.s. of the reaction

AπN = ω∗ [G(s, t) + H(s, t)i(~σ~n)] ω′ ni =
1

|~k||~q|
εijmkjqm ,

G(s, t) =
∑

L

[
(L+1)F+

L (s)− LF−L (s)
]
PL(z) ,

H(s, t) =
∑

L

[
F+

L (s) + F−L (s)
]
P ′L(z) .

F+
L = (−1)L+1(|~k||~q|)L√χiχf

α(L)
2L+1

BW+
L (s) ,

F−L = (−1)L(|~k||~q|)L√χiχf
α(L)

L
BW−

L (s) .

χi = mi + ki0 α(L) =
L∏

l=1

2l − 1
l

=
(2L− 1)!!

L!
.
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γN interaction

Photon has quantum numbers JPC = 1−−, proton 1/2+. Then in S-wave two states

can be formed is 1/2− and 3/2−.

Then P-wave 1/2+, 3/2+ and 1/2+, 3/2+, 5/2+.

In general case: 1/2−, 1/2+ are described by two amplitudes and higher states by

three amplitudes.

V
(1+)µ
α1...αn = γµiγ5X

(n)
α1...αn , V

(1−)µ
α1...αn = γξγµX

(n+1)
ξα1...αn

,

V
(2+)µ
α1...αn = γνiγ5X

(n+2)
µνα1...αn , V

(2−)µ
α1...αn = X

(n+1)
µα1...αn ,

V
(3+)µ
α1...αn = γνiγ5X

(n+1)
να1...αng⊥µαn

, V
(3−)µ
α1...αn = X

(n−1)
α2...αng⊥α1µ .

Gauge invariance: εµq1µ = 0 where q1-photon momentum.

εµV (2±)µ
α1...αn

= C±εµV (3±)µ
α1...αn

where C± do not depend on angles.
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In c.m.s. of the reaction

A =
∑

i

u(k1)V ∗(i±)µ
α1...αn

F β1...βn
α1...αn

N
(±)
β1...βn

u(q1)εµBW±
L (s) = ω∗Jµεµω′ ,

Jµ = iF1σµ + F2(~σ~q)
εµijσikj

|~k||~q|
+ iF3

(~σ~k)

|~k||~q|
qµ + iF4

(~σ~q)
~q2

qµ .

F1(z) =

∞X
L=0

[LM+
L + E+

L ]P ′L+1(z) + [(L + 1)M−
L + E−

L ]P ′L−1(z) ,

F2(z) =

∞X
L=1

[(L + 1)M+
L + LM−

L ]P ′L(z) ,

F3(z) =

∞X
L=1

[E+
L −M+

L ]P ′′L+1(z) + [E−
L + M−

L ]P ′′L−1(z) ,

F4(z) =

∞X
L=2

[M+
L − E+

L −M−
L − E−

L ]P ′′L (z).
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Our amplitudes can be algebraically rewritten to multipole representation:

EL = E
+(1)
L + E

+(2)
L ML = M

+(1)
L + M

+(2)
L

E
+(1)
L = (−1)L√χiχf

α(L)
2L+1

(|~k||~q|)L

L+1
BW+(s) ,

M
+(1)
L = E

+(1)
L .

E
+(2)
L = (−1)L√χiχf

α(L)
2L+1

(|~k||~q|)L

L+1
BW+(s) ,

M
+(2)
L = −E

+(2)
L

L
.
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2 The cross section for photoproduction processes

The differential cross section for production of two or more particles has the form:

dσ =
(2π)4|A|2

4
√

(k1k2)2 −m2
1m

2
2

dΦn(k1 + k2, q1, . . . , qn) ,

where k1 and k2 are momenta of the initial particles (nucleon and γ in the case of

photoproduction) and qi are momenta of final state particles. The

dΦn(k1 + k2, q1, . . . , qn) is the element of the n-body phase volume given by

dΦn(k1 + k2, q1, . . . , qn) = δ4(k1 + k2 −
n∑

i=1

qi)
n∏

i=1

d3qi

(2π)32q0i
.

The photoproduction amplitude can be written as

A = εµūiAµuf ,

where εµ is the γ polarization vector and ūi and uf are the bispinors of the initial and

final state nucleon.
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If particle polarizations are not known the amplitude squared is summed over

polarizations of final particles and averaged over polarization of initial particles.

|A|2 =
1
4

∑

αjm

ε∗αµ εα
ν ū

(j)
i A∗µu

(m)
f ū

(m)
f Aνu

(j)
i ,

2∑

i=1

u(i)(k1)ū(i)(k1) = m + k̂1 → (m + k̂1)
(
1− iγ5Ŝ

)

ε1
µ = (0; 1, 0, 0) ε2

µ = (0; 0, 1, 0)

For non-polarized case:

1

2

X
α

ε∗α
ν εα

µ =
1

2

0
BBBBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCCCA

Polarization

along y axis

−→

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1
CCCCCA

.
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Single meson photoproduction
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1) Meson-meson scattering:

only one observable is measured

2) The πN elastic scattering:

3 observables should be measured for

a complete experiment.

3) Meson photoproduction experiment:

8 observables should be measured for

a complete experiment.
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NN - scattering

Transition of two baryons with momenta p1 and p2 into two baryons with p′1 and p′2,

s = (p1 + p2)2 = (p′1 + p′2)
2, k = p1 − p2, k′ = p′1 − p′2:

A =
(
ū(p′1)V

S′,L′
µ1...µJ

(k′⊥)uc(−p′2)
)

Oµ1...µn
ν1...νn

(
ūc(−p2)V S,L

ν1...νJ
(k⊥)u(p1)

)
Apw(s) .

uc
j(−p) = CūT

j (p) C = γ2γ0 =

(
0 −σ2

−σ2 0

)

Vertex operators:

V 0,L
µ1...µJ

= iγ5X
(J)
µ1...µJ

(k⊥) V 1,L<J
µ1...µJ

= γµ1X
(n−1)
µ2...µJ

(k⊥)

V 1,L=J
µ1...µJ

= εµ1ηξγγηX
(J)
ξµ2...νJ

(k⊥)Pγ V 1,L>J
µ1...µJ

= γαXαµ1...µJ
(k⊥)
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The resonance amplitudes for meson photoproduction

)1u(k

)2 (k∈ 3q

)1(qu

π π p → π 2 R→ 1 R→ p γ

2R

(L, S) )
2 Rπ, S

2 Rπ(L

2q

1R

The general form of the angular dependent part of the amplitude:

ū(q1)Ñα1...αn(R2→µN)F α1...αn
β1...βn

(q1 + q2)Ñ
(j)β1...βn
γ1...γm

(R1→µR2)

F γ1...γm
ξ1...ξm

(P )V
(i)µ

ξ1...ξm
(R1→γN)u(k1)εµ

F µ1...µL
ν1...νL

(p) = (m+p̂)Oµ1...µL
α1...αL

L + 1

2L+1

�
g⊥α1β1−

L

L+1
σα1β1

� LY
i=2

gαiβiO
β1...βL
ν1...νL

σαiαj =
1

2
(γαiγαj − γαj γαi)
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Energy independent analysis (the πN elastic scattering)

Energy part of partial amplitudes are fitted as parameters

AπN = ω∗ [G(s, t) + H(s, t)i(~σ~n)] ω′

G(s, t)=
X

L

h
(L+1)F+

L (s)− LF−L (s)
i
PL(z) H(s, t)=

X

L

h
F+

L (s) + F−L (s)
i
P ′L(z)

The strong signals can be

extracted from existing da-

ta imposing dispersion rela-

tions.
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Energy dependent analysis
Extraction of leading singularities

1. Pole singularities : stable particles and resonances.

2. Threshold (square root) singularities defined by the decay of the system into final

particles.

3. Logarithmical singularities due to rescattering of three particles (triangle diagrams).

4. Box singularities (one over square root) defined by 4 particle rescattering (box

diagrams).

5. cuts on left-hand side complex plane due to exchange processes.

(m1+m2)
2

(m1+m2+nµ)2(m1+m2)
2-(nµ)2

M2

π∆
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The simplest parameterization of the pole, Breit-Wigner amplitude:

A =
Λ

M2 − s− iMΓ

The pole is at s = M2 − iMΓ. The residue in the pole R = Λ, the amplitude has a

peak at s = M2.

The width of the state is formed by decays into open channels. Then the threshold

singularities should be taken into account:

Aab =
gagb

M2 − s− i
∑
j

ρj(s)g2
j

where ρj(s) is the phase volume.

Two body phase volume:

ρ(s,m1,m2) =

√
(s− (m1 + m2)2)(s− (m1 −m2)2)

s

k2L

F (L, k2, r)
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Three body phase volume:

ρ3(s) =

(
√

s−m1)
2∫

(m2+m3)2

ds23

π

ρ(s,
√

s23,m1) MRΓR
tot

(M2
R−s23)2+(MRΓR

tot)2
,

MRΓR
tot = ρ(s23,m2,m3)g2(s23) ,

-0.8

-0.6

-0.4

-0.2

0

0.2

1.4 1.6 1.8 2 2.2 2.4

1 1′

2

2′

3

3′

4

4′

scut

Re s, GeV2

Im
 s

, G
eV

2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

1 1.2 1.4 1.6 1.8 2

MR
2 - i MR

 ΓR

(√s


-m1)
2

(m2+m3)
2

A

A

B

B

Re s23, GeV2

Im
 s

23
, G

eV
2



Introduction to Bonn-Gatchina partial wave analysis method Jülich 2011 29

3 K-matrix representation of the scattering amplitude

The unitarity condition for the partial wave amplitude:

SS+ = I S = I + 2iρ̂(s)Â(s)

S =
I + iρ̂K̂

I − iρ̂K̂
= I + 2iρ̂A(s), A(s) = K̂(I − iρ̂K̂)−1

Where K̂ is a real matrix.

One pole, multi-channel K-matrix corresponds to the relativistic Breit-Wigner amplitude:

Kab =
gagb

M2 − s
→ Aab =

gagb

M2 − s− i
∑
j

ρj(s)g2
j
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The K-matrix amplitude can be considered as a solution of Bethe-Salpeter equation:

= +B(s)
g g

Aab(s, s) =

∞∫

4m2

ds′

π

Aaj(s, s′)iρj(s′)Kjb(s)
s′ − s− i0

+ Kab(s)

But ... with omitted real part of loop diagrams:

Aab = Aajiρj(s)Kjb + Kab → Â = K̂(I− iρ̂K̂)−1
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P-vector approach

The γγ → ππ reaction: the contribution from the γγ-loop to the width of the state can

be neglected.

= ++

+ + ...

π

π

π ηK 

Ak = Pj(I − iρK)−1
jk Pj =

∑
m

Λng
(n)
1

M2
n − s

+ Fj
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N/D based analysis of the data

In the case of resonance contributions only we have factorization and Bethe-Salpeter

equation can be easily solved:

J m J K m δJK
π η K

π η K

Ajm = Ajk

X
α

Bkm
α (s)

1

Mm − s
+

δjm

M2
j − s

Bkm
α (s) =

∞Z

4m2
j

ds′

π

g
(k)
α (s′)ρ(s′)g(m)

α (s′)
s′ − s− i0

Â = κ̂(I − B̂κ̂)−1 κij =
δij

M2
i − s

Bij =
X

α

Bkm
α (s)

For non-resonant contributions: there is no factorization and the amplitude can have a

complicated energy dependence. However in majority of K-matrix analysis the

non-resonant contributions are constant or have a simple energy dependence .

Non-factorization can be taken into account by introduction of two transitions with fixed

left and right vertices.
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Parameterization of P13 wave: 3 resonances 8 channels, 4 non-resonant contributions

πN → πN , πN → ηN , πN → KΣ, πN → ∆π. It corresponds to 8× 8 channel

K-matrix and 5× 5 N/D-matrix .

In many cases (fixed form-factor or subtraction procedure) the real part can be

calculated in advance (for S-wave):

B(s) = ReB(M2) +
g2

π
[ρ(s) ln

1− ρ(s)
1 + ρ(s)

− ρ(M2) ln
1− ρ(M2)
1 + ρ(M2)

] + iρ(s)g2

The P-vector approach is strait forward:

Aab = Σ a b
i j

ij   Pb = Σ b
i j

ij

1. This approach satisfies analyticity and two body unitarity conditions. It takes

left-hand side singularities into account.

2. The approach is suitable for the analysis of high statistic data in combined analysis

of many reactions.

3. However: a treatment of the real part for interfering resonances is model dependent.
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Methods for parameter optimization

1. The two body final states πN → πN , ππ → ππ, γp → πN , pp̄(at rest) → 3π:

χ2 method. For n measured bins we minimize

χ2 =
n∑

j

(σj(PWA)− σj(exp))2

(∆σj(exp))2

2. Reactions with three or more final states are analyzed with logarithm likelihood

method. The minimization function:

f = −
N(data)∑

j

ln
σj(PWA)

N(rec MC)∑
m

σm(PWA)

This method allows us to take into account all correlations in many dimensional

phase space.


