Status of the Bonn-Gatchina partial wave analysis

A. Anisovich

HISKP, Uni-Bonn (Bonn) and PNPI (Gatchina)

Petersburg Nuclear Physics Institute

Topics

- Data review
- Multipole decomposition of the single pion photoproduction amplitude
- ullet $P_{11}(1/2^+)$ wave
- ullet $P_{13}(3/2^+)$ wave

Bonn-Gatchina PWA group

A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev and U. Thoma.

Aims of BnGa PWA

- Aim: Determination of the full spectrum of baryon resonances and their decay modes
- Method: Simultaneous description of all relevant data for baryon spectroscopy

Pion induced reactions with recently included data sets.

Observable	$N_{ m data}$	$\frac{\chi^2}{N_{ m data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$	
$N_{1/2^-}^* S_{11}(\pi N \rightarrow \pi N)$) 104	1.81	SAID	$\Delta_{1/2^-}$ S ₃₁ (π N $\rightarrow\pi$ N) 112	2.27	SAID
$N_{1/2^+}^* P_{11}(\pi N \rightarrow \pi N)$) 112	2.49	SAID	$\Delta_{1/2^+} P_{31}(\pi N \rightarrow \pi N)$	I) 104	2.01	SAID
$N_{3/2^+}^* P_{13}(\pi N \rightarrow \pi N)$	[•]) 112	1.90	SAID	$\Delta_{3/2^+}^* P_{33}(\pi N \rightarrow \pi N)$	T) 120	2.53	SAID
$\Delta_{3/2^-}^* D_{33}(\pi N \rightarrow \pi N)$	J) 108	2.56	SAID	$N_{3/2^-}^* D_{13}(\pi N \rightarrow \pi N)$	I) 96	2.16	SAID
$N_{5/2^-}^* D_{15}(\pi N \rightarrow \pi N)$	V) 96	3.37	SAID	$\Delta_{5/2^+}$ F ₃₅ $(\pi N \rightarrow \pi N)$	í) 62	1.32	SAID
$\Delta_{7/2^+}$ F ₃₇ (π N \rightarrow π N	í) 72	2.86	SAID				
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	70	1.96	Richards et al.	$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	84	2.67	CBALL
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!K\Lambda)$	479	1.55	RAL	$P(\pi^- p \rightarrow K\Lambda)$	261	1.76	RAL+ANL
$\frac{d\sigma/d\Omega(\pi^+p \to K^+\Sigma)}{d\sigma/d\Omega(\pi^+p \to K^+\Sigma)}$) 609	1.91	RAL	$P(\pi^+ p \to K^+ \Sigma)$	420	2.74	RAL
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\pi^0\pi$	0)		CBALL				

Single meson photoproduction reactions with recently included data sets.

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	1106	1.34	CB-ELSA	$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\rightarrow\mathrm{p}\pi^0)$) 861	1.46	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\mathrm{p}\pi^0)$	592	2.11	CLAS	$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\mathrm{p}\pi^0)$) 1692	1.25	TAPS@MAMI
$E(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \pi^0)$	140	1.23	A2-GDH	$\Sigma(\gamma \mathrm{p} \!\rightarrow\! \mathrm{p} \pi^0)$	1492	3.26	SAID db
$\mathrm{P}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0})$	607	3.23	SAID db	$T(\gamma p \rightarrow p \pi^0)$	389	3.71	SAID db
$\mathrm{H}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0})$	71	1.26	SAID db	$G(\gamma p \rightarrow p \pi^0)$	75	1.50	SAID db
$O_x(\gamma p \rightarrow p \pi^0)$	7	1.77	SAID db	$O_z(\gamma p \rightarrow p \pi^0)$	7	0.46	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$) 1583	1.64	SAID db	$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+$) 408	0.62	A2-GDH
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{n} \pi^+)$	899	3.48	SAID db	$E(\gamma \mathrm{p} \rightarrow \mathrm{n}\pi^+)$	231	1.55	A2-GDH
$P(\gamma p \rightarrow n\pi^+)$	252	2.90	SAID db	$T(\gamma p \rightarrow n\pi^+)$	661	3.21	SAID db
$\mathrm{H}(\gamma\mathrm{p}\!\rightarrow\!\mathrm{p}\pi^+)$	71	3.90	SAID db	$G(\gamma p \rightarrow p \pi^+)$	86	5.64	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	680	1.47	CB-ELSA	$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	100	2.16	TAPS
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \eta)$	51	2.26	GRAAL 98	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \eta)$	100	2.02	GRAAL 07
$T(\gamma \mathbf{p} \rightarrow \mathbf{p}\eta)$	50	1.48	Phoenics				

Comparison of different data sets on the $\gamma p \to \pi^0 p$ differential cross section, curve

- 1. Free normalization factors (0.95-1.05) for each data sets are used;
- 2. Additional systematic errors are estimated and used in the fit

The fitted reactions. Recently included data sets.

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$	
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.23	CLAS	$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.20	CLAS
$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.41	CLAS	$C_z(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.00	CLAS
$d\sigma/d\Omega(\gamma p \rightarrow \Lambda K^+)$	1377	1.81	CLAS	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^0 K^+)$)1280	2.06	CLAS
$P(\gamma p \rightarrow \Lambda K^+)$	202	2.03	CLAS	$P(\gamma p \rightarrow \Sigma^0 K^+)$	95	1.45	CLAS
$\Sigma(\gamma \mathrm{p} \!\rightarrow\! \Lambda \mathrm{K}^+)$	66	1.53	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	42	0.90	GRAAL
$\Sigma(\gamma \mathrm{p} \!\rightarrow\! \Lambda \mathrm{K}^+)$	45	1.65	LEP	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	1.11	LEP
${ m T}(\gamma { m p}\! ightarrow\!\Lambda { m K}^+)$	66	1.26	GRAAL 09	$ \mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Sigma^+\mathrm{K}^0$) 48	3.76	CLAS
$O_x(\gamma\mathrm{p}\! ightarrow\!\Lambda\mathrm{K}^+)$	66	1.30	GRAAL 09	$ \mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Sigma^+\mathrm{K}^0$)160	0.98	CB-ELSA
$O_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.54	GRAAL 09	$P(\gamma p \rightarrow \Sigma^+ K^0)$	72	0.61	CB-ELSA
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0\pi^0)$	CE	B-ELSA ((1.4 GeV)	$E(\gamma p \rightarrow p \pi^0 \pi^0)$	16	1.91	MAMI
${ m d}\sigma/{ m d}\Omega(\gamma{ m p}\! ightarrow\!{ m p}\pi^{0}\eta)$	CE	B-ELSA ((3.2 GeV)	$\Sigma(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\eta)$	180	2.37	GRAAL
${ m d}\sigma/{ m d}\Omega(\gamma{ m p}\! ightarrow\!{ m p}\pi^{0}\pi^{0})$	CE	B-ELSA ((3.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \pi^0)$	128	0.96	GRAAL

 $\gamma p
ightarrow \pi^0 p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV)

 $\Delta(1232)P_{33}$ $N(1520)D_{13}$ $N(1535)S_{11}$ $N(1650)S_{11}$ $N(1680)F_{15}$ $\Delta(1700)D_{33}$ $\Delta(1920)P_{33}$

CLAS 07 data on the differential cross section for $\gamma p \to \pi^0 p$ with current solution. Only statistical errors for the CLAS data are shown.

CLAS 09 data on the differential cross section for $\gamma p \rightarrow \pi^+ n$ with current solution. Only statistical errors for the CLAS data are shown.

Photoproduction multipoles and partial waves. In general, two multipoles lead to one spin-parity wave.

Multipoles		Partia	J^P	
E_0^+	-	S_{11}	S_{31}	$1/2^{-}$
-	M_1^-	P_{11}	P_{31}	$1/2^{+}$
E_1^+	M_1^+	P_{13}	P_{33}	$3/2^{+}$
E_2^-	M_2^-	D_{13}	D_{33}	$3/2^{-}$
E_2^+	M_2^+	D_{15}	D_{35}	$5/2^{-}$
E_{3}^{-}	M_3^-	F_{15}	F_{35}	$5/2^{+}$

Real (left) and imaginary (right) parts of multipoles for the π^0 photoproduction.

Real (left) and imaginary (right) parts of multipoles for the π^+ photoproduction.

13

T-matrix poles (our fit and PDG value):

 $M = 1370 \pm 4$ (1365 \pm 15) MeV, $-2 Im = 193 \pm 7$ (190 \pm 30) MeV;

- $M = 1708 \pm 18$ (1720 ± 50) MeV, $-2 Im = 200 \pm 20$ (230 ± 150)MeV;
- $M = 1870 \pm 30 \text{ MeV}, -2 \ Im = 280 \pm 80 \text{ MeV}$

$\pi^- p \rightarrow n \pi^0 \pi^0$ (Crystal Ball) total cross section

 $\gamma p \rightarrow p \pi^0 \pi^0$ (CB-ELSA) M.Fuchs et al.

PWA corrected cross section and contributions from $\Delta(1232)\pi$ (dashed) and $N\sigma$ (dashed-dotted) final states.

Contributions from D_{33} (dotted), P_{11} (dashed) and D_{13} (dashed-dotted) partial waves.

The $\gamma p \to \pi^0 \pi^0 p$ helicity 3/2 and 1/2 differential cross sections

Properties of $N(1440)P_{11}$. The left column lists mass, width, partial widths of the Breit-Wigner resonance; the right column stands for pole position and squared couplings to the final state at the pole position.

Μ	=	$1436 \pm 15\mathrm{MeV}$	$M_{ m pole}$	=	$1371\pm7\mathrm{MeV}$	
Γ	=	$335\pm40\mathrm{MeV}$	$\Gamma_{ m pole}$	=	$192\pm20\mathrm{MeV}$	
$\Gamma_{\pi N}$	=	$205\pm25\mathrm{MeV}$	$g_{\pi N}$	=	$(0.51 \pm 0.05) \cdot e^{-i\pi \frac{(35\pm 5)}{180}}$	
$\Gamma_{\sigma N}$	=	$71\pm17{ m MeV}$	$g_{\sigma N}$	=	$(0.82 \pm 0.16) \cdot e^{-i\pi \frac{(20\pm 13)}{180}}$	
$\Gamma_{\pi\Delta}$	=	$59\pm15\mathrm{MeV}$	$g_{\pi\Delta}$	=	$(-0.57 \pm 0.08) \cdot e^{i\pi \frac{(25\pm 20)}{180}}$	
T-matrix: $A_{1/2} = 0.055 \pm 0.020 {\rm GeV} \qquad \phi = (70 \pm 30)^\circ$						

The differential cross section for the $\pi^- p \to K \Lambda$ reaction shows a clear contribution

from this state ($S_{11}-P_{11}$ interference):

Preliminary fit

The total cross section for the $\pi^-p \to K\Lambda$ reaction:

Preliminary result

The recoil asymmetry for the $\pi^-p \to K\Lambda$ reaction. also shows a clear contribution

from this state:

Preliminary fit

The data on $\pi^- p \to \eta n$ and the target asymmetry $\gamma p \to \eta p$ fix the position and couplings of $P_{11}(1710)$ state and reduce ηN coupling of the $P_{13}(1720)$ state.

${ m N}\pi ightarrow { m N}\pi$, P_{13} Wave (3 pole 8 channel K-matrix)

2nd T-matrix poles: $M = 1960 \pm 20$ MeV, $2 Im = 195 \pm 45$ MeV;

$P_{13}(1900)$ resonance

For $\gamma p \to K\Lambda$ (left) and $\gamma p \to K\Sigma$ (right) we have almost complete photoproduction experiment: σ (CLAS, SAPHIR), Σ (GRAAL, LEP), P (CLAS), C_x, C_z (CLAS), T, O_x, O_z (GRAAL).

$P_{13}(1900)$ resonance

The solution is supported by the new GRALL data on $O_x O_z$ and T-observables: an important step to a complete experiment.

Summary

- 1. An approach for the combined analysis of the pion and photo induced reaction with two and multiparticle final states is developed.
- 2. The combined analysis of more than 75 different reactions helped us to identify the properties of known baryons.
- 3. The new data support the two new baryon states observed in hyperon photoproduction of $P_{11}(1880)$ and $P_{13}(1900)$.
- 4. The η -photoproduction data reveal the baryon resonance $D_{15}(2070)$.
- 5. The $D_{33}(1940)$ state is needed for the description of the $\gamma p \rightarrow \pi^0 \eta p$ data.
- 6. The data on $\pi^- p \to \eta n$ and $\pi^- p \to K^0 \Sigma$ support an existence of $P_{11}(1710)$.
- 7. The spectrum of observed states is in direct contradiction with a classical quark model. The best explanations are chiral symmetry reconstruction or AdS/QCD soft-wall model (see talk of E.Klempt).