

Nucleon Excitations

E. Klempt

Helmholtz-Institut für Strahlen– und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY

e-mail: klempt@hiskp.uni-bonn.de

5-th International Conference on Quarks and Nuclear Physics QNP 2009, Beijing , September 21-26, 2009

1: How is the spectrum of nucleon resonances organized and what is their mass pattern?

- Three-body dynamics?	Constituent quark models
- Are baryons generated dynamical	ly? Chiral Lagrangians
- Are there chiral doublets?	Chiral symmetry restored at high masses?
- Are there (L, S) super-multiplets	? AdS/QCD

In this talk I will argue that

a) at high masses, only light-baryon resonances are observed that can be described by the quantum numbers N, L, S, (J)In the quark model, you have: $n_1, n_2, l_1, l_2, s_1, s_2, j_1, j_2, L, S, J$

b) and their masses are given by

 $M^2 = 1.04(L + N + 3/2) - 1.46\alpha_D \quad [\text{GeV}^2]$

 $lpha_D=0$ if there is a 'good' diquark with $I_{qq}=S_{qq}=0$

2: Quark models:

In the quark model, there are two independent oscillators. Choosing harmonic oscillators (h.o.), the states are characterized by (D, L_N^P)

D is the SU(3) dimensionality (56 or 70)

- \boldsymbol{L} the orbital angular momentum
- **P** the parity

 \mathbf{N} the shell number

Note: In non-relativistic quark models $M^2 \propto N$, bands with positive and negative parity alternate.

Two questions emerge ...

- 1. Can we relate these h.o. states with observed resonances?
- 2. Is there some systematic of the so-called missing resonances? Not all solutions of a Hamiltonian need to be realized dynamically!

... for which (speculative) answers will be given.

There are great successes of the quark model for baryon spectroscopy:

- Interpretation of ground-state baryons in SU(3) multiplets
- Correct prediction of the multiplicity of low-mass negative-parity states in the first excitation band $(D, L_N^P) = (70, 1_1^-)$.
- Correct prediction of baryon properties like form factors, magnetic moments, \cdots

... but some problems remain:

- The $N_{1/2^-}(1535) N_{1/2^+}(1440)$ mass difference is +100 MeV experimentally - 80 MeV in quark models
- There are more states predicted than found experimentally (missing resonance problem)
- There are no states in a 20-plet $(6 \otimes 6 \otimes 6) = (56 \oplus 2 \cdot 70 \oplus 20)$
- Conceptually, I do not expect that constituent quarks have a defined rest mass when going to high excitation energies.

Quark model variants help ...

Five-quark states:

(q - qq) $(q\bar{q}qqq)$ m NP-wave S-wave

A P-wave excitation "costs" about 450 MeV. Adding a pseudoscalar $q\bar{q}$ pair in S-wave may be energetically favored.

Baryons like $N_{1/2^-}(1535)$ could be made up from five quarks.

B.S. ZOU

Hybrid baryons:

The gluonic flux tube can be excited leading to a rich spectrum of hybrid baryons. PH. PAGE

... but do not solve the problems

3: Dynamical generation of resonances:

- 1: Classical example: $\Delta(1232)$: qqq or N?CHEW2: $N(1535)S_{11}$ as $N -\Sigma K$ coupled-channel effectKAISER, WEISE3: $\Lambda(1405)S_{01}$ (split into 2 states!)OSET, MEISSNER
- \Rightarrow Can all baryon resonances be constructed from their decay modes? LUTZ
- \Rightarrow Are these dual descriptions or lead qqq and molecular descriptions to different states (which may mix) leading to a larger number of states ?

Quark model states need long-range corrections with higher Fock configurations. These are dominated by the meson-baryon interaction (and include four-quark and hybrid configurations).

Resonances described in a hadronic picture require short-range corrections. These lead back to interacting quarks and gluons.

Quark-model wave functions and meson-baryon states have a sizable overlap, possibly spanning the same Hilbert space!

Possibly, we should not add the red and the green spectrum !

- 1. There is one $N(1535)S_{11}$ resonance, not a red and the green one.
- 2. $f_0(980), a_0(980)$ are both, molecules and $q\bar{q}$ states
- 3. The hidden charm X, Y, Z resonances are molecules and $q\bar{q}$ states
- 4. $\sigma(500)$ and $\kappa(700)$ are dynamically generated good basis and $1^3 P_0$ quark model states bad basis

4 : Parity doublets

Baryon resonances exhibit an unexpected phenomenon: parity doublets, pairs of resonances with the same spin J but opposite parities. Often, these are quartets of N^* and Δ^* having the same J.

Resonances and star rating are taken from PDG. States not found in the recent SAID analysis are marked by a .

$J=rac{1}{2}$	$N_{1/2^+_{**}}(1710)^a$	$\mathrm{N_{1/2^-}_{****}(1650)}$	$\Delta_{1/2^+}(1750)^a$	$\Delta_{1/2^{****}}^{(1620)}$
$J{=}rac{3}{2}$	${ m N}_{3/2^+_{****}}(1720)$	${ m N}_{3/2}{}^{***}(1700)^a$	$\Delta_{3/2^+_{***}}^{(1600)^a}$	$\Delta_{3/2^{****}}^{-}(1700)$
$J{=}rac{5}{2}$	${ m N}_{5/2+lpha+lpha+lpha}(1680)$	${ m N}_{5/2^{stststata}}(1675)$	no chiral	partners
$J{=}rac{1}{2}$	${ m N}_{1/2+}(1880)^a$	${ m N}_{1/2^-}{(1905)^a}_*$	$\Delta_{1/2^+_{****}}^{(1910)}$	$\Delta_{1/2}^{-}_{**}^{(1900)^a}$
$J{=}rac{3}{2}$	${ m N_{3/2+}(1900)^{a}}_{**}$	${ m N}_{3/2}^{-}_{**}^{(1860)^a}$	$\Delta_{3/2}^+_{***}^{(1920)^a}$	$\Delta_{3/2}^{-}_{**}^{(1940)^a}$
$J{=}rac{5}{2}$	no chiral	partners	$\Delta_{5/2^+_{**}**}^{(1905)}$	$\Delta_{5/2}^{-}_{***}^{(1930)^a}$
$J{=}rac{7}{2}$	${ m N_{7/2+}(1990)^{a}}_{**}$	${ m N_{7/2^-}(2190)}_{****}$	$\Delta_{7/2^+_{****}}^{(1950)}$	$\Delta_{7/2^-}{(2200)^a}_*$
$J=\frac{9}{2}$	${ m N_{9/2+}(2220)}_{****}$	${ m N_{9/2^{****}}(2250)}$	$\Delta_{9/2^+}(2300)^a_{**}$	$\Delta_{9/2}^{-}_{**}^{(2400)}$

Is there a phase transition ? GLOZMAN

5: Super-multiplets with defined quantum numbers

\vec{L} and \vec{S} :

Relativity plays an important role in quark models. In relativistic models, only the total angular momentum J is defined. Experimentally, there are a few striking examples where the leading orbital angular momentum and the spin can be identified (small admixtures of other components are not excluded)

1. The negative-parity light-quark baryons form

a *N* doublet, a *N* triplet, and a Δ doublet,

well separated in mass from all other negative parity states.

L;S	$J^P=1/2$	J=3/2	J=5/2
L=1;S=1/2	$N_{1/2^{-}}(1535)$	$N_{3/2^{-}}(1520)$	
L=1;S=3/2	$N_{1/2^{-}}(1650)$	$N_{3/2^{-}}(1700)$	$N_{5/2^-}(1675)$
L=1;S=1/2	$\Delta_{1/2^{-}}(1620)$	$\Delta_{3/2^{-}}(1700)$	

2. The positive parity states form isolated

	N^* doublet, N^* quartet, Δ^* quartet				
L;S	$J^P = 1/2^+$	$3/2^+$	$5/2^+$	$7/2^+$	
L=2;S=1/2		$N_{3/2^+}(1720)$	$N_{5/2^+}(1680)$		
L=2;S=3/2	$N_{1/2^+}(1880)$	$N_{3/2^+}(1900)$	$N_{5/2^+}(2000)$	$N_{7/2^+}(1990)$	
L=2;S=3/2	$\Delta_{1/2^+}(1910)$	$\Delta_{3/2^+}(1920)$	$\Delta_{5/2^+}(1905)$	$\Delta_{7/2^+}(1950)$	

3. At higher mass there is are mass degenerate negative-parity

$\begin{tabular}{ c c c c } \hline \Delta & triplet & \Delta & doublet \\ \hline \end{array}$					
	$J^P=1/2$	3/2	5/2	7/2	
L=1;S=3/2	$\Delta_{1/2^{-}}(1900)$	$\Delta_{3/2^{-}}(1940)$	$\Delta_{5/2^{-}}(1930)$	No state!	
L=3;S=1/2			$2233 53^{a}$	$\Delta_{7/2^{-}}(2200)$	

^a from Arndt, 2006.

Conclusion: L, S supermultiplets are an important organizing principle for baryon spectroscopy!

The radial excitation quantum number N

Caution: Shell number N and radial excitation number N are related by N = L + 2N;

The Roper-like resonances (lowest mass states with ground-state q.n.):

	N,Δ	Λ	Σ, Σ	Ξ,Ξ	N=0
$56,8;1/2\ \delta M^2$	$N_{1/2^+}(1440) \ 1.19{\pm}0.11$	$egin{array}{l} \Lambda_{1/2^+}(1600)\ 1.31{\pm}0.11 \end{array}$	$\Sigma_{1/2^+}(1660)\\1.34{\pm}0.11$	$\Xi_{1/2^+}(1690) \ 1.13{\pm}0.03$	
56,10;3/2	$\Delta_{3/2^+}(1600)$		$\Sigma_{3/2^+}(1840)$	x	N=1
δM^2	1.04 ± 0.15		1.47 ± 0.44		
$egin{array}{l} 70,8;1/2\ \delta M^2 \end{array}$	$N_{1/2^+}(1710) \ 2.04{\pm}0.15$	$egin{array}{l} \Lambda_{1/2^+}(1810)\ 2.03\pm \ 0.15 \end{array}$	$\Sigma_{1/2^+}(1770) \ 1.72\pm 0.16$	x	Possibly
${70,10;1/2\over \delta M^2}$	$\Delta_{1/2^+}(1750) \ 1.54 \pm 0.16$		$\Sigma_{1/2^+}(1880)\\2.12{\pm}0.11$	x	11-2

The states in the 70-plet require both oscillators to be excited !

6: What are the masses as functions of L, S and N?

ADS/QCD predicts for Δ resonances:

Brodsky, Teramond

$$M^2 = a(L+N+3/2)$$

The constant a is related to a soft cut-off at large distances. The full Δ is given by confinement only!

 H. Forkel, M. Beyer and T. Frederico, JHEP 0707, 077 (2007);

 E. K., EPJ A38, 187 (2008). [hep-ph].

 Mass is given by size!

L, NResonance Pred. a_D $\frac{1}{2}$ 0,0 N(940)input: 0.94 0,0 0 $\Delta(1232)$ 1.27 $\frac{1}{2}$ $\frac{1}{4}$ 0,1N(1440)1.40 N(1535)N(1520)1,0 1.530 N(1675)1,0 N(1650)N(1700)1.64 $\Delta(1620)$ $\Delta(1700)$ $\Delta(1600)$ 0 L, N=0,1:1,0 1.64 $\frac{1}{2}$ N(1680)N(1710)2,0N(1720)L, N=0,2:1.722,00 N(1900)N(1990)N(2000) $\Delta(1910)$ $\Delta(1920)$ 1.92 $\Delta(1950)$ $\Delta(1900)^{*}$ $\Delta(1940)^{*}$ $\Delta(1930)^{*}$ 2,00 $\Delta(1905)$ 1.92 $\frac{1}{2}$ $\frac{1}{4}$ 0,3 N(2100)2.03N(2190)N(2080)N(2090)N(2070)L, N=1,2:3,0 2.120 3,0 N(2200)N(2250) $\Delta(2223)$ $\Delta(2200)$ L, N = 1, 2:2.20 $rac{1}{2}$ $\Delta(2150)$ 4,0 N(2220)2.270 $\Delta(2390)$ $\Delta(2300)$ $\Delta(2420)$ 4,0 $\Delta(2400)$ 2.43|L, N=3,1: $\Delta(2350)$ $\frac{1}{4}$ $\frac{1}{2}$ 5,0 N(2600)2.57N(2700)2.716,0 0 $\Delta(2950)$ L, N = 5, 1: $\Delta(2750)$ 6,0 2.84

Including nucleons : $M^2 = 1.04 \cdot (L + N + 3/2) - 1.46 \alpha_D \left[\text{GeV}^2 \right]$

*: L, N=1,1.

H. Forkel and E. K., Phys. Lett. B 679, 77 (2009).

Excellent agreement with 2 parameters !

7: Which states are observed and which ones not?

a: Ground states: N, Δ with $56 = {}^{4}10 + {}^{2}8$

b: The first excitation band: $(D, L_N^P) = (70, 1_1^-)$

	0 = 10 + 0		L
L;S	J=1/2	J=3/2	J=5/2
L=1;S=1/2	$N_{1/2^{-}}(1535)$	$N_{3/2^{-}}(1520)$	
L=1;S=3/2	$N_{1/2^{-}}(1650)$	$N_{3/2^{-}}(1700)$	$N_{5/2^-}(1675)$
70, 10; 1/2	$\Delta_{1/2^{-}}(1620)$	$\Delta_{3/2^{-}}(1700)$	

70 =	$^{2}10$	+ 48	$+^{2}$	$8 + {}^{2}1$
				-

This is in agreement with quark model expectations.

c: The second excitation band:

$(D, L^P_{N}) = ($	$(56, 0_2^+), (70,$	$(0_2^+), \text{perha}$	aps seen : $N($	$(1710), \Delta(1750)$
$(D, L^P_{\sf N}) =$	(20,	1_2^+), not s	een	
$(D, L_{N}^{P}) = \underline{(}$	$(56, 2_2^+), (70,$	$(2_2^+), \text{partl}$	y seen	
D; s; L	J=1/2	J=3/2	J=5/2	J=7/2
56,8;1/2;0	$N_{1/2^+}(1440)$			
56,8;1/2;2		$N_{3/2^+}(1720)$	$N_{5/2^+}(1680)$	
56,10;3/2;0		$\Delta_{3/2^+}(1600)$		
56,10;3/2;2	$\Delta_{1/2^+}(1910)$	$\Delta_{3/2^+}(1920)$	$\Delta_{5/2^+}(1905)$	$\Delta_{7/2^+}(1950)$
70,8;1/2;0	$N_{1/2^+}(1710)$			
70, 8; 3/2; 2	$N_{1/2^+}(1880)$	$N_{3/2^+}(1900)$	$N_{5/2^+}(2000)$	$N_{7/2^+}(1990)$
70,8;1/2;2		x	x	
70,10;3/2;0	$\Delta_{1/2^+}(1750)$			
70,10;1/2;2		x	x	
20, 8; 1/2; 2	x	x		

d: The third excitation band:

	$(D, L_{N}^{P}) = (\underline{(56, 1_{3})}, 2(70, 1_{3}), (20, 1_{3}), (20, 1_{3}),$				
	$(D, L^P_{\sf N})$	= (70, 2 ₃),			
	(D, L^P_{N})	= (56, 3 ₃), ($(20, 3_3), (20, 3_3)$),	
$\mathrm{D};s$		J=1/2	J=3/2	J = 5/2	
56, 8; 1/2		$N_{1/2^{-}}(1846)$	$N_{3/2^{-}}(1875)$		
56, 10; 3/2		$\Delta_{1/2^{-}}(1900)$	$\Delta_{3/2^{-}}(1940)$	$\Delta_{5/2^{-}}(1930)$	
D; <i>s</i>	J=3/2	J=5/2	J=7/2	J=9/2	
70, 8; 1/2		$N_{5/2^{-}}(2070)$	$N_{7/2^{-}}(2190)$		
70, 8; 3/2	$oldsymbol{x}$	$N_{5/2^{-}}(2200)$	$oldsymbol{x}$	$N_{9/2^{-}}(2250)$	
70, 10; 1/2		$oldsymbol{x}$	$\Delta_{7/2^{-}}(2200)$		

Some multiplets are (nearly) completely filled, others are empty. Conjecture: permutation symmetry is relaxed for large separation. Only scalar isoscalar diquarks survive at large excitation energy. In the transition region, also vector isovector diquarks are important.

8: Conclusions and Outlook

1 Quantum numbers

In contrast to the general believe, the leading orbital angular momentum of baryons can be identified. Also, the radial excitation quantum numbers seems to be an identifiable number.

2 Mass values

A simple AdS/QCD-based mass formula reproduces the full baryon spectrum (Δ : 1 parameter, nucleon: 2nd parameter, strange and cascades: 3 parameter) The first two parameters are related to the size of the resonance. "Good diquarks", qq pairs with S = 0 and I = 0, are more compact than other pairs (like S = 1 and I = 1).

3 Occupation

The first excitation shell is completely full, the second partly, the third has completely filled multiplets and completely empty multiplets. There seems to be a dynamical selection rule. The observed states match the predictions of AdS/QCD.