Search for missing baryon states. Analysis methods and perspective for new experiments.

Petersburg Nuclear Physics Institute A. Sarantsev

HISKP (Bonn), PNPI (Russia)

Symposium on Barion resonance production and e^+/e Conversion Decay 14-19 May 2012, Krakow

The latest analysis of SAID (GWU) of πN elastic data as well as $\gamma p \rightarrow \pi^0 p$ and $\gamma p \rightarrow \pi^+ n$ did not confirm the set of states observed in earlier analysis of πN elastic data. CLAS (M. Dugger et al.). Phys.Rev.C79:065206,2009.

State	PDG (Pole po	sition)(MeV)	Bonn-Gatchina PWA (MeV)		
	Mass	Mass Width		Width	
$P_{11}(1710)^{***}$	1720 ± 50	230 ± 150	1710 ± 20	200 ± 18	
$P_{33}(1600)^{***}$	1550 ± 100	300 ± 100	1510 ± 20	220 ± 45	
$P_{33}(1920)^{***}$	1900 ± 50	200^{+100}_{-50}	1900 ± 30	260 ± 60	
$D_{13}(1720)^{***}$	1680 ± 50	100 ± 50	1790 ± 40	390 ± 140	
$P_{13}(1900)^*$	~ 1900	498 ± 78	1905 ± 30	250^{+120}_{-50}	

Problem in the baryon spectroscopy and/or quark model:

The number of predicted three quark states exceeds dramatically the number of discovered baryons.

The elastic πN data can provide a reliable information about ground states only. If elastic branching is less than 10% the state is difficult to identify.

Possible solution:

- 1. Analysis of the inelastic data from πN collision. There are old data on $\pi N \to K\Lambda$, $\pi N \to K\Sigma$ (Aragon, RAL). Controversial data on $\pi N \to \eta N$, new low energy data on $\pi^- p \to \pi^0 \pi^0 n$ (Crystal Ball) and not available anymore data on $\pi^- p \to \pi^+ \pi^- n$.
- 2. Analysis of photoproduction data taken by CLAS (JLab, USA), GRAAL, LEPS (Japan), MAMI (Mainz) and Crystal Barrel at ELSA (Bonn).
- 3. Analysis of baryon states produced in nuclear-nuclear collisions e.g. meson production in NN interaction.

Krakow 2012

Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Srantsev, U. Thoma http://pwa.hiskp.uni-bonn.de/

Responsible: Dr. V. Nikonov, E-mail: <u>nikonov@hiskp.uni-bonn.de</u> Last changes: January 26th, 2010.

Search for baryon states

- 1. Analysis of single and double meson photoproduction reactions. $\gamma p \rightarrow \pi N, \eta N, K\Lambda, K\Sigma, \pi \pi N, \pi \eta N$, CB-ELSA, CLAS, GRAAL, LEPS, MAMI.
- 2. Analysis of single and double meson production in pion-induced reactions. $\pi N \to \pi N, \eta N, K\Lambda, K\Sigma, \pi \pi N.$
- 3. Analysis of single and double meson production $NN \rightarrow \pi NN$ and $\pi \pi NN$ (Wasa, PNPI, HADES)
- 4. Analysis of hyperon production $NN \rightarrow K\Lambda p$ (WASA, HADES)

Approach:

- 1. Energy dependent analysis of the data. Such conditions as analyticity and unitarity can be imposed from the beginning.
- 2. A combined analysis of large data sets.
- 3. In future: an energy fixed partial wave analysis of the data on photoproduction.

Energy dependent approach

In many cases an unambiguous partial wave decomposition at fixed energies is impossible. Then the energy and angular parts should be analyzed together:

$$A(s,t) = \sum_{\beta\beta' n} A_n^{\beta\beta'}(s) Q_{\mu_1...\mu_n}^{(\beta)+} F_{\nu_1...\nu_n}^{\mu_1...\mu_n} Q_{\nu_1...\nu_n}^{(\beta')}$$

- 1. C. Zemach, Phys. Rev. 140, B97 (1965); 140, B109 (1965).
- 2. S.U.Chung, Phys. Rev. D 57, 431 (1998).
- 3. B. S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537 (2003)
- 1. Correlations between angular part and energy part are under control.
- 2. Unitarity and analyticity can be introduced from the beginning.
- 3. Parameters can be fixed from a combined fit of many reactions.
- 1. Anisovich: 2001ra A. V. Anisovich, V. V. Anisovich, V. N. Markov, M. A. Matveev and A. V. Sarantsev, J. Phys. G G 28, 15 (2002)
- 2. A. Anisovich, E. Klempt, A. Sarantsev and U. Thoma, Eur. Phys. J. A 24, 111 (2005)
- 3. A. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A 30, 427 (2006)
- 4. A. V. Anisovich, V. V. Anisovich, E. Klempt, V. A. Nikonov and A. V. Sarantsev, Eur. Phys. J. A 34, 129 (2007).

Orbital momentum operator

The angular momentum operator is constructed from momenta of particles k_1 , k_2 and metric tensor $g_{\mu\nu}$.

For L = 0 this operator is a constant: $X^0 = 1$

The L = 1 operator is a vector $X_{\mu}^{(1)}$, constructed from: $k_{\mu} = \frac{1}{2}(k_{1\mu} - k_{2\mu})$ and $P_{\mu} = (k_{1\mu} + k_{2\mu})$. Orthogonality:

$$\int \frac{d^4k}{4\pi} X^{(1)}_{\mu_1} X^{(0)} = \int \frac{d^4k}{4\pi} X^{(n)}_{\mu_1\dots\mu_n} X^{(n-1)}_{\mu_2\dots\mu_n} = \xi P_{\mu_1} = 0$$

Then:

$$X^{(1)}_{\mu}P_{\mu} = 0 \qquad \qquad X^{(n)}_{\mu_1\dots\mu_n}P_{\mu_j} = 0$$

and:

$$X^{(1)}_{\mu} = k^{\perp}_{\mu} = k_{\nu} g^{\perp}_{\nu\mu}; \qquad g^{\perp}_{\nu\mu} = \left(g_{\nu\mu} - \frac{P_{\nu}P_{\nu}}{p^2}\right);$$

in c.m.s $k^{\perp}=(0,\vec{k})$

Recurrent expression for the orbital momentum operators $X_{\mu_1...\mu_n}^{(n)}$

$$X_{\mu_{1}\dots\mu_{n}}^{(n)} = \frac{2n-1}{n^{2}} \sum_{i=1}^{n} k_{\mu_{i}}^{\perp} X_{\mu_{1}\dots\mu_{i-1}\mu_{i+1}\dots\mu_{n}}^{(n-1)} - \frac{2k_{\perp}^{2}}{n^{2}} \sum_{\substack{i,j=1\\i< j}}^{n} g_{\mu_{i}\mu_{j}} X_{\mu_{1}\dots\mu_{i-1}\mu_{i+1}\dots\mu_{j-1}\mu_{j+1}\dots\mu_{n}}^{(n-2)}$$

Scattering of two spinless particles

Denote relative momenta of particles before and after interaction as q and k, correspondingly. The structure of partial–wave amplitude with orbital momentum L = J is determined by convolution of operators $X^{(L)}(k)$ and $X^{(L)}(q)$:

$$A_L = BW_L(s) X^{(L)}_{\mu_1 \dots \mu_L}(k) O^{\mu_1 \dots \mu_L}_{\nu_1 \dots \nu_L} X^{(L)}_{\nu_1 \dots \nu_L}(q) = BW_L(s) X^{(L)}_{\mu_1 \dots \mu_L}(k) X^{(L)}_{\mu_1 \dots \mu_L}(q)$$

 $BW_L(s)$ depends on the total energy squared only.

The convolution $X_{\mu_1...\mu_L}^{(L)}(k)X_{\mu_1...\mu_L}^{(L)}(q)$ can be written in terms of Legendre polynomials $P_L(z)$:

$$X^{(L)}_{\mu_1...\mu_L}(k)X^{(L)}_{\mu_1...\mu_L}(q) = \alpha(L) \quad \sqrt{k_{\perp}^2} \sqrt{q_{\perp}^2} \quad ^L P_L(z) ,$$

Krakow 2012

πN interaction

States with J = L - 1/2 are called '-' states ($1/2^+$, $3/2^-$, $5/2^+$,...) and states with J = L + 1/2 are called '+' states ($1/2^-$, $3/2^+$, $5/2^-$,...).

 $N^{+}_{\mu_1...\mu_n} = X^{(n)}_{\mu_1...\mu_n} \qquad N^{-}_{\mu_1...\mu_n} = i\gamma_{\nu}\gamma_5 X^{(n+1)}_{\nu\mu_1...\mu_n}$

$$A_{\pi N} = \bar{u}(k_1) N_{\mu_1 \dots \mu_n}^{*\pm} F_{\nu_1 \dots \nu_n}^{\mu_1 \dots \mu_n}(P) N_{\nu_1 \dots \nu_n}^{\pm} u(q_1) B W_{n+1}^{\pm}(s)$$

$$A_{\pi N} = \omega^* \left[G(s,t) + H(s,t)i(\vec{\sigma}\vec{n}) \right] \omega' \qquad n_i = \frac{1}{|\vec{k}||\vec{q}|} \epsilon_{ijm} k_j q_m ,$$

$$G(s,t) = \sum_L \left[(L+1)F_L^+(s) + LF_L^-(s) \right] P_L(z) ,$$

$$H(s,t) = \sum_L \left[F_L^+(s) - F_L^-(s) \right] P'_L(z) .$$

$$F_{L}^{+} = (|\vec{k}||\vec{q}|)^{L} \sqrt{\chi_{i}\chi_{f}} \frac{\alpha(L)}{2L+1} BW_{L}^{+}(s) ,$$

$$F_{L}^{-} = (|\vec{k}||\vec{q}|)^{L} \sqrt{\chi_{i}\chi_{f}} \frac{\alpha(L)}{L} BW_{L}^{-}(s) .$$

NN - scattering

Transition of two baryons with momenta p_1 and p_2 into two baryons with p'_1 and p'_2 , $s = (p_1 + p_2)^2 = (p'_1 + p'_2)^2$, $k = p_1 - p_2$, $k' = p'_1 - p'_2$. Two baryons with $J^P = \frac{1}{2}^+$ can have spin states S = 0, 1.

$$A = \left(\bar{u}(p_1')V_{\mu_1\dots\mu_J}^{S',L'}(k_{\perp}')u^c(-p_2')\right)O_{\nu_1\dots\nu_n}^{\mu_1\dots\mu_n}\left(\bar{u}^c(-p_2)V_{\nu_1\dots\nu_J}^{S,L}(k_{\perp})u(p_1)\right)A_{pw}(s).$$

$$u_j^c(-p) = C\bar{u}_j^T(p)$$
 $C = \gamma_2\gamma_0 = \begin{pmatrix} 0 & -\sigma_2 \\ -\sigma_2 & 0 \end{pmatrix}$

Vertex operators:

$$V^{0,L}_{\mu_{1}...\mu_{J}} = i\gamma_{5}X^{(J)}_{\mu_{1}...\mu_{J}}(k^{\perp}) \qquad V^{1,LJ}_{\mu_{1}...\mu_{J}} = \gamma_{\alpha}X_{\alpha\mu_{1}...\mu_{J}}(k^{\perp})$$

The resonance amplitudes for meson photoproduction

The general form of the angular dependent part of the amplitude:

$$\bar{u}(q_1)\tilde{N}_{\alpha_1\dots\alpha_n}(R_2 \to \mu N)F^{\alpha_1\dots\alpha_n}_{\beta_1\dots\beta_n}(q_1+q_2)\tilde{N}^{(j)\beta_1\dots\beta_n}_{\gamma_1\dots\gamma_m}(R_1 \to \mu R_2)$$
$$F^{\gamma_1\dots\gamma_m}_{\xi_1\dots\xi_m}(P)V^{(i)\mu}_{\xi_1\dots\xi_m}(R_1 \to \gamma N)u(k_1)\varepsilon_\mu$$

$$F^{\mu_1\dots\mu_L}_{\nu_1\dots\nu_L}(p) = (m+\hat{p})O^{\mu_1\dots\mu_L}_{\alpha_1\dots\alpha_L}\frac{L+1}{2L+1} g^{\perp}_{\alpha_1\beta_1} - \frac{L}{L+1}\sigma_{\alpha_1\beta_1} \prod_{i=2}^L g_{\alpha_i\beta_i}O^{\beta_1\dots\beta_L}_{\nu_1\dots\nu_L}$$
$$\sigma_{\alpha_i\alpha_j} = \frac{1}{2}(\gamma_{\alpha_i}\gamma_{\alpha_j} - \gamma_{\alpha_j}\gamma_{\alpha_i})$$

Parameterization of the partial wave amplitude

1. Poles: amplitude as a sum of the Breit-Wigner states:

$$A = \sum_{\beta} \frac{\Lambda_{\beta}}{M_{\beta}^2 - s - i \sum_{j} g_j^{(\beta)2} \rho_j(s)}$$

$$\beta = J, S, L, n \dots$$

2. K-matrix approach. (Unitarity and analyticity)

$$A_{1i} = K_{1j} (I - i\rho K)_{ji}^{-1} \qquad K_{ij} = \sum_{\alpha} \frac{g_i^{\alpha} g_j^{\alpha}}{M_{\alpha}^2 - s} + f_{ij}(s)$$

3. N/D-method (Unitarity and correct analytical properties)

$$A_{jm} = A_{jk} \sum_{\alpha} B_{\alpha}^{km}(s) \frac{1}{M_m - s} + \frac{\delta_{jm}}{M_j^2 - s}$$

$$\hat{B}_{ij} = \sum_{\alpha} B_{\alpha}^{ij} = \sum_{\alpha} \int \frac{ds'}{\pi} \frac{g_{\alpha}^{(R)i} \rho_{\alpha}(s', m_{1\alpha}, m_{2\alpha}) g_{\alpha}^{(L)j}}{s' - s - i0}$$

Minimization methods

1. The two body final states $\pi N \to \pi N$, $\pi \pi \to \pi \pi$, $\gamma p \to \pi N$, $p\bar{p}(at\,rest) \to 3\pi$: χ^2 method. For n measured bins we minimize

$$\chi^2 = \sum_{j}^{n} \frac{\left(\sigma_j(PWA) - \sigma_j(exp)\right)^2}{(\Delta\sigma_j(exp))^2}$$

2. Reactions with three or more final states are analyzed with logarithm likelihood method. The minimization function:

$$f = -\sum_{j}^{N(data)} ln \frac{\sigma_j(PWA)}{\sum_{m}^{N(rec\,MC)} \sigma_m(PWA)}$$

This method allows us to take into account all correlations in many dimensional phase space.

Baryon Data Base

Pion induced reactions (χ^2 analysis).

Observable	$N_{ m data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$\frac{N_{1/2^-}^* S_{11}(\pi N \rightarrow \pi N)}{N_{1/2^-}}$) 112	2.05	SAID (2.10)	$\Delta_{1/2^-}$ S ₃₁ ($\pi N \rightarrow \pi N$	í) 112	2.31	SAID (2.10)
$N_{1/2^+}^* P_{11}(\pi N \rightarrow \pi N)$	í) 112	2.49	SAID (2.10)	$\Delta_{1/2^+} P_{31}(\pi N \rightarrow \pi N)$	V) 104	3.81	SAID (2.10)
$N_{3/2^+}^{*'} P_{13}(\pi N \rightarrow \pi N)$	í) 112	1.33	SAID (2.20)	$\Delta_{3/2^+}^* P_{33}(\pi N \rightarrow \pi N)$	V) 120	2.79	SAID (2.20)
$N_{3/2^-}^* D_{13}(\pi N \rightarrow \pi N)$	J) 108	2.55	SAID (2.20)	$\Delta_{3/2^{-}}^{*}$ D ₃₃ (π N $\rightarrow\pi$ N	V) 108	2.47	SAID (2.10)
$N_{5/2^{-}}^{*} D_{15}(\pi N \rightarrow \pi N)$	J) 140	2.37	SAID (2.40)	$N_{7/2^{-}}^{*} G_{17}(\pi N \rightarrow \pi N)$	V) 102	2.54	SAID (2.40)
$N_{5/2^+}^* F_{15}(\pi N \rightarrow \pi N)$	88 (1.72	SAID (2.20)	$\Delta_{5/2^+} \operatorname{F}_{35}(\pi \mathrm{N} \!\rightarrow\! \pi \mathrm{N})$	J) 62	1.45	SAID (2.10)
$N_{7/2^+}^* F_{17}(\pi N \rightarrow \pi N)$) 82	1.98	SAID (2.50)	$\Delta_{7/2^+}$ F ₃₇ $(\pi N \rightarrow \pi N)$	J) 72	2.75	SAID (2.10)
$N_{9/2^-}^* G_{19}(\pi N \to \pi N)$	V) 74	2.82	SAID (2.50)	$N_{9/2^+}^*$ H ₁₉ ($\pi N \rightarrow \pi N$	V) 86	2.56	SAID (2.50)
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	70	1.58	Richards et al.	$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	84	2.73	CBALL
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!K\Lambda)$	598	1.67	RAL	$P(\pi^- p \rightarrow K\Lambda)$	355	1.67	RAL+ANL
				$\beta(\pi^-p \rightarrow K\Lambda)$	72	1.04	RAL
$\frac{d\sigma/d\Omega(\pi^+p \to K^+\Sigma)}{d\sigma/d\Omega(\pi^+p \to K^+\Sigma)}$) 609	1.25	RAL	$P(\pi^+ p \to K^+ \Sigma)$	307	1.43	RAL
				$\beta(\pi^+p \rightarrow K^+\Sigma)$	7	2.08	RAL
$d\sigma/d\Omega(\pi^-p \to K^0 \Sigma^0)$) 259	0.88	RAL	$P(\pi^- p \to K^0 \Sigma^0)$	95	1.35	RAL

Baryon Data Base (SAID db: 2008)

 π and η photoproduction reactions (χ^2 analysis).

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	1106	1.56	CB-ELSA	$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\rightarrow\mathrm{p}\pi^0)$) 861	1.58	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\mathrm{p}\pi^0)$	592	1.27	CLAS	$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$) 1692	2.00	TAPS@MAMI
$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^0)$	540	0.71	CB-ELSA	$\Sigma(\gamma p \rightarrow p \pi^0)$	1492	2.48	SAID db
$E(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \pi^0)$	140	1.14	A2-GDH				
$\mathrm{P}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0})$	607	2.98	SAID db	$T(\gamma p \rightarrow p \pi^0)$	389	3.15	SAID db
$\mathrm{H}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0})$	71	1.17	SAID db	$G(\gamma p \rightarrow p \pi^0)$	75	1.70	SAID db
$O_x(\gamma p \rightarrow p \pi^0)$	7	1.14	SAID db	$O_z(\gamma p \rightarrow p \pi^0)$	7	0.27	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$) 484	1.45	CLAS	$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$)1583	1.53	SAID db
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\mathrm{n}\pi^+)$) 408	0.55	A2-GDH				
$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{n}\pi^+)$	899	2.95	SAID db	$E(\gamma \mathbf{p} \rightarrow \mathbf{n}\pi^+)$	231	1.52	A2-GDH
$P(\gamma p \rightarrow n\pi^+)$	252	2.00	SAID db	$T(\gamma p \rightarrow n\pi^+)$	661	2.87	SAID db
$H(\gamma p \rightarrow p \pi^+)$	71	4.20	SAID db	$G(\gamma p \rightarrow p \pi^+)$	86	5.67	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	680	1.23	CB-ELSA	$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	100	2.26	TAPS
$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$	51	1.90	GRAAL 98	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \eta)$	100	2.43	GRAAL 07
$T(\gamma \mathbf{p} \rightarrow \mathbf{p}\eta)$	50	1.39	Phoenics				

Baryon Data Base

Kaon photoproduction (χ^2 analysis).

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{ m data}}$	
$d\sigma/d\Omega(\gamma p \rightarrow \Lambda K^+)$) 1320	0.78	CLAS09	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^0 K^+)$) 1590	1.44	CLAS
$P(\gamma p \rightarrow \Lambda K^+)$	1270	1.75	CLAS09	$P(\gamma p \rightarrow \Sigma^0 K^+)$	344	2.69	CLAS
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.44	CLAS	$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.36	CLAS
$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.53	CLAS	$C_z(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	1.62	CLAS
$\Sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	3.32	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	42	1.80	GRAAL
$\Sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	45	2.34	LEP	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	1.31	LEP
$T(\gamma p \rightarrow \Lambda K^+)$	66	1.35	GRAAL 09	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^+ K^0)$) 48	3.41	CLAS
$O_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.70	GRAAL 09	$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Sigma^+\mathrm{K}^0)$) 72	0.67	CB-ELSA 10
$O_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.66	GRAAL 09	$P(\gamma p \rightarrow \Sigma^+ K^0)$	24	1.17	CB-ELSA 10
$P(\gamma p \rightarrow \Lambda K^+)$	84	0.60	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^+ K^0)$	15	1.39	CB-ELSA 10

Baryon Data Base

Multi-meson final states (maximum likelihood analysis).

$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\pi^0\pi^0)$	CBALL				
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}{ o}\mathrm{p}\pi^0\pi^0)$	CB-ELSA (1.4 GeV)	$\mathrm{E}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0})$	16	1.91	MAMI
${ m d}\sigma/{ m d}\Omega(\gamma{ m p}{ m m o}{ m p}\pi^0\eta)$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\eta)$	180	2.37	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0})$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^0 \pi^0)$	128	0.96	GRAAL
${ m d}\sigma/{ m d}\Omega(\gamma{ m p}{ m m o}{ m p}\pi^0\eta)$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \eta)$	180	2.37	GRAAL
$\mathrm{I_c}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^0\eta)$	CB-ELSA (3.2 GeV)	${ m I_s}(\gamma { m p}\! ightarrow\!{ m p}\pi^0\eta)$	CB-ELSA (3.2 GeV)		

Krakow 2012

Description of the πN elastic amplitudes (GWU energy independent solution) with

The fit of the the $\pi^- p \to K \Lambda$ reaction

0.9

0.8 Full experiment for $\pi N \to K\Lambda$: 0.7 differential cross section, analyzing 0.6 power, rotation parameter. 0.5 A clear evidence for resonances which 0.4 are hardly seen (or not seen) in 0.3 the elastic reactions: $N(1710)P_{11}$, 0.2 $N(1900)P_{13}$, 0.1

The total cross section for the reaction $\pi^-p \to K^0 \Lambda$ and contributions from leading partial waves in K-matrix (full) and D-matrix (dashed) solutions.

 $\pi^- p \to K \Lambda \, (d\sigma/d\Omega, P)$

The $\pi N \to K \Lambda$ amplitudes

The fit of the the $\pi^+ p \to K^+ \Sigma^+$ reaction

The $\pi N \to K\Sigma$ I=3/2 amplitudes

The $\pi N \to K\Sigma$ I=1/2 amplitudes

The $\pi N \rightarrow \eta N$ amplitudes

and $N\sigma$ (dashed-dotted) final states. and D_{13} (dashed-dotted) partial waves.

$N(1440)\frac{1}{2}^+$ or $N(1$	$(440)P_{11}$		$N(1520)\frac{3}{2}^{-}$ or $N(1)$	$(520)D_{13}$	
$N(1440)\frac{1}{2}^+$ pole parameters (M	eV)		$N(1520)\frac{3}{2}^{-}$ pole parameters (M	eV)	
$M_{\rm pole}$ 1370±4	$\Gamma_{\rm pole}$	190±7	$M_{\rm pole}$ 1507±3	$\Gamma_{\rm pole}$	111±5
Elastic pole residue 48 ± 3	Phase	$-(78\pm4)^{\circ}$	Elastic pole residue 36 ± 3	Phase	-(14±3)°
Residue $\pi N \to N\sigma$ 20±5	Phase	-(135±7)°	Residue $\pi N \rightarrow \Delta \pi_{L=0}$ 18±4	Phase	$(150\pm 20)^{\circ}$
Residue $\pi N \to \Delta \pi$ 26±3	Phase	$(40\pm5)^{\circ}$	Residue $\pi N \to \Delta \pi_{L=2}$ 14±3	Phase	$(100\pm 20)^{\circ}$
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.044 \pm 0.007$	Phase	$(142\pm5)^{\circ}$	$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) -0.021 \pm 0.004$	Phase	(0±5)°
			$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) 0.132 \pm 0.009$	Phase	(2±4)°
$N(1440)\frac{1}{2}^+$ Breit-Wigner param	neters (MeV)		$N(1520)\frac{3}{2}^{-}$ Breit-Wigner param	neters (MeV)	
$M_{\rm BW}$ 1430±8	$\Gamma_{\rm BW}$	365 ± 35	$M_{\rm BW}$ 1517±3	$\Gamma_{\rm BW}$	114±5
Br(πN) 62 \pm 3%			Br(πN) 62 \pm 3%		
Br($N\sigma$) 17±7%	$Br(\Delta \pi)$	21±8%	$Br(\Delta \pi_{L=0}) \qquad 19 \pm 4\%$	${ m Br}(\varDelta\pi_{L=2})$	9±2%
$A_{BW}^{1/2} ({\rm GeV^{-rac{1}{2}}})$ -0.061 \pm 0.008			$A_{BW}^{1/2} ({\rm GeV^{-\frac{1}{2}}}) $ -0.022±0.004	$A_{BW}^{3/2} ({ m GeV}^{-{1\over 2}}) 0$.131±0.010

$N(1535)\frac{1}{2}^{-}$ or $N(2)$	$1535)S_{11}$		$N(1650)\frac{1}{2}^{-}$ or $N(1)$	$(650)S_{11}$		
$N(1535)\frac{1}{2}^{-}$ pole parameters (N	leV)		$N(1650)\frac{1}{2}^{-}$ pole parameters (MeV)			
M_{pole} 1501±4	$\Gamma_{\rm pole}$	134±11	$M_{\rm pole}$ 1647±6	$\Gamma_{\rm pole}$ 103±8		
Elastic pole residue 31 ± 4	Phase	$-(29\pm5)^{\circ}$	Elastic pole residue 24 ± 3	Phase $-(75\pm12)^{\circ}$		
Residue $\pi N \to N\eta$ 29±4	Phase	$-(76\pm5)^{\circ}$	Residue $\pi N \to N\eta$ 15±2	Phase $(134\pm10)^{\circ}$		
Residue $\pi N \to \Delta \pi$ 8 ± 3	Phase	$(145\pm17)^{\circ}$	Residue $\pi N \to \Lambda K$ 11±3	Phase $(85\pm9)^{\circ}$		
			Residue $\pi N \to \Delta \pi$ 12±3	Phase $-(30\pm20)^{\circ}$		
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.116 \pm 0.010$	Phase	(7±6)°	$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.033 \pm 0.007$	Phase $-(9\pm15)^{\circ}$		
$N(1535)\frac{1}{2}^{-}$ Breit-Wigner param	neters (MeV)		$N(1650)\frac{1}{2}^{-}$ Breit-Wigner param	neters (MeV)		
$M_{\rm BW}$ 1519±5	$\Gamma_{\rm BW}$	128 ± 14	$M_{\rm BW}$ 1651±6	$\Gamma_{\rm BW}$ 104±10		
Br(πN) 54 \pm 5%			Br($N\pi$) 51±4%	Br($N\eta$) 18±4%		
Br($N\eta$) 33±5%	$Br(\Delta \pi)$	$2.5 \pm 1.5\%$	$Br(\Lambda K) 10\pm5\%$	$Br(\Delta \pi)$ 19±6%		
$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.105 \pm 0.010$			$A_{BW}^{1/2} ({\rm GeV}^{-\frac{1}{2}}) 0.033 \pm 0.007$			

$N(1675)\frac{5}{2}^{-}$ or N	$(1675)D_{15}$	N(1680) $\frac{5}{2}^+$ or N(1680) F_{15}			
$N(1675)\frac{5}{2}^{-}$ pole parameters (1	MeV)	$N(1680)\frac{5}{2}^+$ pole parameters (MeV)			
M_{pole} 1654±4	$\Gamma_{\rm pole}$ 151±5	M_{pole} 1676±6 Γ_{pole} 113±4			
Elastic pole residue 28 ± 1	Phase $-(26\pm 4)^{\circ}$	Elastic pole residue 43 ± 4 Phase $-(2\pm10)^{\circ}$			
Residue $\pi N \to \Delta \pi$ 25±5	Phase $(82\pm10)^{\circ}$	Residue $\pi N \to \Delta \pi_{L=1}$ 8±3 Phase -(70±45)°			
Residue $\pi N \to N\sigma$ 11±4	Phase $(132\pm18)^{\circ}$	Residue $\pi N \to \Delta \pi_{L=3}$ 13±3 Phase (85±15)°			
		Residue $\pi N \to N\sigma$ 14±3 Phase -(56±15)°			
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.024 \pm 0.003$	Phase $-(16\pm5)^{\circ}$	$A^{1/2} (\text{GeV}^{-\frac{1}{2}})$ -0.013±0.004 Phase -(25±22)°			
$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.026 \pm 0.008$	Phase $-(19\pm6)^{\circ}$	$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) 0.134 \pm 0.005 \text{Phase} -(2\pm 4)^{\circ}$			
$N(1675)\frac{5}{2}^{-}$ Breit-Wigner para	meters (MeV)	$N(1680)\frac{5}{2}^+$ Breit-Wigner parameters (MeV)			
$M_{\rm BW}$ 1664±5	$\Gamma_{\rm BW}$ 152 \pm 7	$M_{\rm BW}$ 1689 $\pm 6 \Gamma_{\rm BW}$ 118 ± 6			
Br($N\pi$) 40±3%		Br($N\pi$) 64±5% Br($N\sigma$) 14±7%			
Br($\Delta \pi$) 33±8%	Br($N\sigma$) 7±3%	$Br(\Delta \pi_{L=1}) \qquad 10 \pm 3\% Br(\Delta \pi_{L=3}) \qquad 5 \pm 3\%$			
$A_{BW}^{1/2} ({ m GeV}^{-rac{1}{2}})0.024{\pm}0.003$	$A_{BW}^{3/2} ({\rm GeV}^{-rac{1}{2}}) 0.025 {\pm} 0.007$	$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) - 0.013 \pm 0.003 A_{BW}^{3/2} (\text{GeV}^{-\frac{1}{2}}) 0.135 \pm 0.006$			

N(1700) $\frac{3}{2}^{-}$ or N(1	$700)D_{13}$		$N(1710)\frac{1}{2}^+$	or $N(1$	$(710)P_{11}$	
$N(1700)\frac{3}{2}^{-}$ pole parameters (Me	eV)		$N(1710)\frac{1}{2}^{+}$ pole pa	rameters (M	leV)	
$M_{\rm pole}$ 1770±40	$\Gamma_{\rm pole}$	420 ± 180	$M_{\rm pole}$	1687±17	$\Gamma_{\rm pole}$	$200{\pm}25$
Elastic pole residue 50 ± 40	Phase	$-(100\pm40)^{\circ}$	Elastic pole residue	6±4	Phase	(120±70)°
Residue $\pi N \rightarrow \Delta \pi_{L=0}$ 75±50	Phase	$-(60\pm40)^{\circ}$	Residue $\pi N \to N\eta$	11±4	Phase	$(0\pm 45)^{\circ}$
Residue $\pi N \rightarrow \Delta \pi_{L=2}$ 18±12	Phase	$(90\pm35)^{\circ}$	Residue $\pi N \to \Lambda K$	17±7	Phase	$-(110\pm20)^{\circ}$
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.044 \pm 0.020$	Phase	$(85\pm45)^{\circ}$	$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) = 0.0$)55±0.018	Phase	-(10±65)°
$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) -0.037 \pm 0.012$	Phase	$(0\pm 30)^{\circ}$				
$N(1700)\frac{3}{2}^{-}$ Breit-Wigner param		$N(1710)\frac{1}{2}^+$ Breit-W	Vigner paran	neters (MeV)		
$M_{\rm BW}$ 1790±40	$\Gamma_{\rm BW}$	390±140	$M_{\rm BW}$	1710 ± 20	$\Gamma_{\rm BW}$	$200{\pm}18$
Br(πN) 12 \pm 5%			$Br(N\pi)$	5±4%	$Br(N\eta)$	17±10%
$Br(\Delta \pi_{L=0}) \qquad 72 \pm 16\%$	$Br(\Delta \pi_{L=2})$	5±4%	$Br(\Lambda K)$	23±7%		
$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.041 \pm 0.017$	$A_{BW}^{3/2}({ m GeV}^{-{1\over 2}})$	-0.034±0.013	$A_{BW}^{1/2} ({ m GeV}^{-rac{1}{2}}) 0.0$	052±0.015		

Confirmed, but ambiguous

Confirmed

N(1720) $\frac{3}{2}^+$ or N(17	$20)P_{13}$	N(1860) $\frac{5}{2}^+$ or N(1	$(860)F_{15}$
$N(1720)\frac{3}{2}^+$ pole parameters (MeV	V)	$N(1860)\frac{5}{2}^+$ pole parameters (M	eV)
$\begin{array}{ccc} M_{\rm pole} & 1660 \pm 30 \\ {\rm Elastic \ pole \ residue} & 22 \pm 8 \\ {\rm Residue} \ \pi N \rightarrow N\eta & 7 \pm 5 \\ {\rm Residue} \ \pi N \rightarrow \Lambda K & 14 \pm 10 \\ {\rm Residue} \ \pi N \rightarrow \Delta \pi_{L=1} & 64 \pm 25 \\ {\rm Residue} \ \pi N \rightarrow \Delta \pi_{L=3} & 8 \pm 8 \end{array}$	$\Gamma_{\rm pole}$ 450±100Phase-(115±30)°Phasenot definedPhase-(150±45)°Phase(80±40)°Phasenot defined	$ \begin{array}{c} M_{\text{pole}} & 1830_{-60}^{+120} \\ \text{Elastic pole residue} & 50\pm20 \end{array} $	$\Gamma_{\rm pole}$ 250 ⁺¹⁵⁰ Phase -(80±40)°
$\begin{array}{ll} A^{1/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.110 \pm 0.045 \\ A^{3/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.150 \pm 0.035 \end{array}$	Phase $(0\pm40)^{\circ}$ Phase $(65\pm35)^{\circ}$	$\begin{array}{c} A^{1/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.020 \pm 0.012 \\ A^{3/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.050 \pm 0.020 \end{array}$	Phase $(120\pm50)^{\circ}$ Phase $-(80\pm60)^{\circ}$
$N(1720)\frac{3}{2}^+$ Breit-Wigner parame	ters (MeV)	$N(1860)\frac{5}{2}^+$ Breit-Wigner param	neters (MeV)
$\begin{array}{ccc} M_{\rm BW} & 1690^{+70}_{-35} \\ {\rm Br}(N\pi) & 10\pm5\% \\ {\rm Br}(\varDelta\pi_{L=1}) & 75\pm15\% \end{array}$	$Γ_{\rm BW}$ 420±100 Br(Nη) 3±2% Br($Δπ_{L=3}$) 2±2%	$\begin{array}{c} M_{\rm BW} & 1860^{+120}_{-60} \\ {\rm Br}(N\pi) & 20\pm6\% \end{array}$	$\Gamma_{\rm BW}$ 270^{+140}_{-50}
$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) = 0.110 \pm 0.045$	$A_{BW}^{3/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.150 \pm 0.030$	$A_{BW}^{1/2} ({ m GeV^{-rac{1}{2}}})$ -0.019±0.011	$A_{BW}^{3/2}$ (GeV ^{-$\frac{1}{2}$}) 0.048±0.018

Needs confirmation

$N(1875)\frac{3}{2}^{-}$ or $N(1)$	$(.875)D_{13}$		$\boxed{N(1880)\frac{1}{2}^+}$	or N(18	$80)P_{11}$	
$N(1875)\frac{3}{2}^{-}$ pole parameters (M	eV)		$N(1880)\frac{1}{2}^{+}$ pole par	ameters (Me	V)	
$M_{\rm pole}$ 1860±25	$\Gamma_{ m pole}$	200±20	$M_{\rm pole}$	1860±35	$\Gamma_{\rm pole}$	250±70
Elastic pole residue 2.5 ± 1.0	Phase	not defined	Elastic pole residue	6 ± 4	Phase	$(80\pm65)^{\circ}$
Residue $\pi N \to \Lambda K 1.5 \pm 1.0$	Phase	not defined	Residue $\pi N \rightarrow \eta N$	13 ± 8	Phase	-(75±55)°
Residue $\pi N \to \Sigma K$ 5±3	Phase	not defined	Residue $\pi N \rightarrow K\Lambda$	4±3	Phase	$(40\pm40)^{\circ}$
Residue $\pi N \to N\sigma$ 8 ± 3	Phase	$-(170\pm65)^{\circ}$	Residue $\pi N \rightarrow K\Sigma$	13±7	Phase	$(95\pm40)^{\circ}$
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.018 \pm 0.008$	Phase	-(100±60)°	$A^{1/2} (\mathrm{GeV}^{-rac{1}{2}})0.014$	$\pm 0.004^{(01)}$	Phase	-(130±60)°
$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) 0.010 \pm 0.004$	Phase	(180±30)°	$A^{1/2} ({ m GeV}^{-rac{1}{2}})0.036$	$\pm 0.012^{(02)}$	Phase	$(15\pm 20)^{\circ}$
$N(1875)\frac{3}{2}^{-}$ Breit-Wigner param	neters (MeV)		$N(1880)\frac{1}{2}^+$ Breit-W	igner parame	ters (MeV)	
$M_{\rm BW}$ 1880±20	$\Gamma_{\rm BW}$	200 ± 25	$M_{\rm BW}$	1870 ± 35	$\Gamma_{\rm BW}$	235 ± 65
$Br(N\pi)$ $3\pm 2\%$	$Br(N\eta)$	5±2%	$Br(\pi N)$	5±3%	$Br(\eta N)$	$25^{+30}_{-20}\%$
$Br(\Lambda K)$ $4\pm 2\%$	$Br(\Sigma K)$	15±8%	$Br(K\Lambda)$	$2 \pm 1\%$	$Br(K\Sigma)$	$17\pm7\%$
$Br(\Delta \pi) \qquad 20 \pm 12\%$	$Br(N\sigma)$	60±12%	$A_{\rm DW}^{1/2}$ (GeV ^{-$\frac{1}{2}$})		. ,	-0.013±0.003 (01)
$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.018 \pm 0.010$	$A_{BW}^{3/2} ({ m GeV}^{-rac{1}{2}})$	-0.009 ± 0.005	$A_{BW}^{1/2}$ (GeV ^{-1/2})			0.034±0.011 ⁽⁰²⁾

Observed by BG group (needs confirmation)

N(1895) $\frac{1}{2}^{-}$ or N(1895)S ₁₁		N(1900) $\frac{3}{2}^+$ or N(1	$900)P_{13}$
$N(1895)\frac{1}{2}^{-}$ pole parameters (MeV)		$N(1900)\frac{3}{2}^+$ pole parameters (M	eV)
$ \begin{array}{cccc} M_{\rm pole} & 1900 \pm 15 & \Gamma_{\rm pole} \\ {\rm Elastic \ pole \ residue} & 1 \pm 1 & {\rm Phase} \\ {\rm Residue} & \pi N \rightarrow \eta N & 3 \pm 2 & {\rm Phase} \\ {\rm Residue} & \pi N \rightarrow K\Lambda & 2 \pm 1 & {\rm Phase} \\ {\rm Residue} & \pi N \rightarrow K\Sigma & 3 \pm 2 & {\rm Phase} \\ \end{array} \\ \hline A^{1/2} \left({\rm GeV}^{-\frac{1}{2}} \right) & 0.012 \pm 0.006 & {\rm Phase} \end{array} $	90^{+30}_{-15} not defined (40±20)° -(90±30)° (40±30)° (120±50)°	M_{pole} 1900±30Elastic pole residue 3 ± 2 Residue $\pi N \rightarrow \eta N$ 6 ± 3 Residue $\pi N \rightarrow K\Lambda$ 9 ± 5 Residue $\pi N \rightarrow K\Sigma$ 5 ± 3 $A^{1/2}$ (GeV $^{-\frac{1}{2}}$) 0.026 ± 0.015 $A^{3/2}$ (GeV $^{-\frac{1}{2}}$) 0.060 ± 0.030	Γ_{pole} 260^{+100}_{-60} Phase $(10\pm35)^{\circ}$ Phase $(70\pm60)^{\circ}$ Phase $(135\pm25)^{\circ}$ Phase $(110\pm30)^{\circ}$ Phase $(60\pm40)^{\circ}$ Phase $(185\pm60)^{\circ}$
$N(1895)\frac{1}{2}^{-}$ Breit-Wigner parameters (MeV)		$N(1900)\frac{3}{2}^+$ Breit-Wigner param	eters (MeV)
$ \begin{array}{cccc} M_{\rm BW} & 1895 \pm 15 & \Gamma_{\rm BW} \\ {\rm Br}(\pi N) & 2 \pm 1\% & {\rm Br}(\eta N) \\ {\rm Br}(K\Lambda) & 18 \pm 5\% & {\rm Br}(K\Sigma) \end{array} $	90^{+30}_{-15} $21\pm9\%$ $13\pm7\%$	$ \begin{array}{ccc} M_{\rm BW} & 1905 \pm 30 \\ {\rm Br}(\pi N) & 3 \pm 2\% \\ {\rm Br}(K\Lambda) & 16 \pm 5\% \\ {\rm Br}(\Delta \pi_{L=1}) & 38 \pm 10\% \end{array} $	$\begin{array}{ccc} \Gamma_{\rm BW} & 250^{+120}_{-50} \\ {\rm Br}(\eta N) & 10\pm 4\% \\ {\rm Br}(K\Sigma) & 5\pm 2\% \\ {\rm Br}(\Delta\pi_{L=3}) & 11\pm 10\% \end{array}$
$A_{BW}^{1/2} ({\rm GeV^{-\frac{1}{2}}}) $ -0.011±0.006		$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.026 \pm 0.015$	$A_{BW}^{3/2} ({\rm GeV}^{-\frac{1}{2}})$ -0.065±0.030

Observed by BG (needs confirmation)

Observed by BG (Confirmed)

N(1990) $\frac{7}{2}^+$ or N($(1990)F_{17}$		$\boxed{N(2000)\frac{5}{2}^+}$	or $N($	$2000)F_{15}$	
$N(1990)\frac{7}{2}^+$ pole parameters (MeV)			$N(2000)\frac{5}{2}^+$ pole parameters (MeV)			
$M_{\rm pole}$ 2030±65	$\Gamma_{\rm pole}$	240 ± 60	$M_{ m pole}$	2030±110	$\Gamma_{\rm pole}$	480 ± 100
Elastic pole residue 2 ± 1	Phase	$(125\pm 65)^{\circ}$	Elastic pole residu	e 35^{+80}_{-15}	Phase	$-(100\pm40)^{\circ}$
Residue $\pi N \rightarrow \Delta \pi_{L=3}$ 8±5	Phase	$(80\pm50)^{\circ}$				
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0.042 \pm 0.014$	Phase	-(30±20)°	$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) 0$.035±0.015	Phase	(15±40)°
$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) 0.058 \pm 0.014$	Phase	-(35±25)°	$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) 0$	$.050 \pm 0.014$	Phase	-(130±40)°
$N(1990)\frac{7}{2}^+$ Breit-Wigner para	meters (MeV)		$N(2000)\frac{5}{2}^+$ Breit	-Wigner para	meters (MeV)	
$M_{\rm BW}$ 2060±65	$\Gamma_{\rm BW}$	240±50	$M_{\rm BW}$	2090±120	$\Gamma_{\rm BW}$	460±100
Br(πN) $2\pm 1\%$	$Br(\Delta \pi_{L=3})$	20±15%	$Br(\pi N)$	9±4%	$Br(\Delta N)$	$50{\pm}20\%$
$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.040 \pm 0.012$	$A_{BW}^{3/2}({ m GeV}^{-{1\over 2}})$	0.057±0.012	$A_{BW}^{1/2} ({ m GeV}^{-rac{1}{2}})0$.032±0.014	$A_{BW}^{3/2}$ (GeV	$(-\frac{1}{2})0.048\pm0.014$

Two solutions

N(2060) $\frac{5}{2}^{-}$ or N(2)	$(2060)D_{15}$	$N(2150)\frac{3}{2}^{-}$ or $N(2)$	$(2150)D_{13}$	
$N(2060)\frac{5}{2}^{-}$ pole parameters (M	eV)	$N(2150)\frac{3}{2}^{-}$ pole parameters (MeV)		
M_{pole} 2040 ± 15 Elastic pole residue 19 ± 5 Residue $\pi N \rightarrow \eta N$ 15 ± 8 Residue $\pi N \rightarrow K\Lambda$ 1 ± 0.5 Residue $\pi N \rightarrow K\Sigma$ 7 ± 4	Γ_{pole} 390 ± 25 Phase $-(125\pm20)^{\circ}$ Phase $(40\pm25)^{\circ}$ Phasenot definedPhase $-(70\pm30)^{\circ}$	M_{pole} 2110 ± 50 Elastic pole residue 13 ± 3 Residue $\pi N \rightarrow K\Lambda$ 5 ± 2 Residue $\pi N \rightarrow K\Sigma$ 3 ± 2	$\Gamma_{\rm pole}$ 340 ± 45 Phase $-(20\pm10)^{\circ}$ Phase $(100\pm30)^{\circ}$ Phase $-(50\pm40)^{\circ}$	
$\begin{array}{c} A^{1/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.065 \pm 0.015 \\ A^{3/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.055^{+15}_{-35} \end{array}$	Phase $(15\pm8)^{\circ}$ Phase $(15\pm10)^{\circ}$	$\begin{array}{c} A^{1/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.125 \pm 0.045 \\ A^{3/2} (\mathrm{GeV}^{-\frac{1}{2}}) & 0.150 \pm 0.060 \end{array}$	Phase $-(55\pm 20)^{\circ}$ Phase $-(35\pm 15)^{\circ}$	
$N(2060)\frac{5}{2}^{-}$ Breit-Wigner param	neters (MeV)	$N(2150)\frac{3}{2}^{-}$ Breit-Wigner param	neters (MeV)	
$\begin{array}{ccc} M_{\rm BW} & 2060 \pm 15 \\ {\rm Br}(\pi N) & 8 \pm 2\% \\ {\rm Br}(K \Sigma) & 3 \pm 2\% \end{array}$	$\begin{array}{c} \Gamma_{\rm BW} & 375\pm25 \\ {\rm Br}(\eta N) & 4\pm2\% \end{array}$	$\begin{array}{c} M_{\rm BW} & 2150 \pm 60 \\ {\rm Br}(\pi N) & 6 \pm 2\% \end{array}$	$\begin{array}{c} \Gamma_{\rm BW} & 330 \pm 45 \\ {\rm Br}(\Delta \pi) & 60 \pm 20\% \end{array}$	
$A_{BW}^{1/2} ({\rm GeV}^{-rac{1}{2}}) 0.067 {\pm} 0.015$	$A_{BW}^{3/2} ({\rm GeV^{-\frac{1}{2}}})0.055{\pm}0.020$	$A_{BW}^{1/2} (\text{GeV}^{-\frac{1}{2}}) \ 0.130 \pm 0.045$	$A_{BW}^{3/2}$ (GeV ^{$-\frac{1}{2}$})0.150±0.055	

Observed by BG (Confirmed)

Observed by BG (needs confirmation)

Baryon spectrum

N(2190) $\frac{7}{2}^{-}$ or N(21	$(90)G_{17}$		$N(2250)\frac{9}{2}^{-}$	or $N(22)$	$(250)G_{19}$	
$N(2190)\frac{7}{2}^{-}$ pole parameters (MeV)			$N(2250)\frac{9}{2}^{-}$ pole parameters (MeV)			
$M_{\rm pole}$ 2150±25	$\Gamma_{\rm pole}$	330±30	$M_{\rm pole}$	2195±45	$\Gamma_{\rm pole}$	470±50
Elastic pole residue 30 ± 5	Phase	$(30\pm10)^{\circ}$	Elastic pole residue	26 ± 5	Phase	-(38±25)°
Residue $\pi N \rightarrow \Delta \pi_{L=2}$ 45±10	Phase	$-(160\pm30)^{\circ}$				
Residue $\pi N \rightarrow K\Lambda$ 4.5±2	Phase	$(20\pm 15)^{\circ}$				
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) = 0.063 \pm 0.007$	Phase	-(170±15)°	$A^{1/2} ({ m GeV}^{-rac{1}{2}})$	< 0.010	Phase	not defined
$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) \qquad 0.035 \pm 0.020$	Phase	$(25\pm10)^{\circ}$	$A^{3/2} ({ m GeV^{-rac{1}{2}}})$	< 0.010	Phase	not defined
$N(2190)\frac{7}{2}^{-}$ Breit-Wigner parameters (MeV)			$N(2250)\frac{9}{2}^{-}$ Breit-W	/igner parame	eters (MeV)	
$M_{\rm BW}$ 2180±20	$\Gamma_{\rm BW}$	335±40	M _{BW}	2280±40	$\Gamma_{\rm BW}$	520±50
Br(πN) 16 $\pm 2\%$	$Br(\Delta \pi_{L=2})$	25±11%	$Br(\pi N)$	12±4%		
Br($K\Lambda$) 0.5±0.3%						
$A_{BW}^{1/2} ({\rm GeV^{-\frac{1}{2}}})$ -0.065±0.008	$A_{BW}^{3/2}({ m GeV^{-rac{1}{2}}})$	0.035±0.017	$ A_{BW}^{1/2} ({\rm GeV^{-\frac{1}{2}}})\!<$	0.010	$ A_{BW}^{3/2} $ (C	$\text{GeV}^{-\frac{1}{2}}) < 0.010$

L, S, N	κ_{gd}			Resonance			Pred.
0 , $\frac{1}{2}$, 0	$\frac{1}{2}$	N(940)				input:	0.94
$0,rac{3}{2}$, 0	0	$\Delta(1232)$					1.27
0, $rac{1}{2}$,1	$\frac{1}{2}$	N(1440)					1.40
1, $rac{1}{2}$,0	$\frac{1}{4}$	N(1535)	N(1520)				1.53
1, $rac{3}{2}$,0	0	N(1650)	N(1700)	N(1675)			1.64
1, $rac{1}{2}$,0	0	$\Delta(1620)$	$\Delta(1700)$		L,S,N =0, $rac{3}{2}$,1:	$\Delta(1600)$	1.64
2, $rac{1}{2}$,0	$\frac{1}{2}$	N(1720)	N(1680)		L,S,N =0, $rac{1}{2}$,2:	N(1710)	1.72
1, $\frac{1}{2}$,1	$\frac{1}{4}$	N(1890)	N(1880)				1.82
1, $\frac{3}{2}$,1	0	$\Delta(1900)$	$\Delta(1940)$	$\Delta(1930)$			1.92
2, $rac{3}{2}$,0	0	$\Delta(1910)$	$\Delta(1920)$	$\Delta(1905)$	$\Delta(1950)$		1.92
2, $rac{3}{2}$,0	0	N(1875)	N(1900)	N(1880)	N(1980)		1.92
0, $rac{1}{2}$,3	$\frac{1}{2}$	N(????)					2.03
3, $rac{1}{2}$,0	$\frac{1}{4}$	N(2075)	N(2185)	L,S,N =1, $rac{1}{2}$,2:	N(????)	N(????)	2.12
3, $rac{3}{2}$,0	0	N(2200)	N(2250)	L,S,N =1, $rac{1}{2}$,2:	$\Delta(2223)$	$\Delta(2200)$	2.20
4, $rac{1}{2}$,0	$\frac{1}{2}$	N(2220)					2.27
4, $rac{3}{2}$,0	0	$\Delta(2390)$	$\Delta(2300)$	$\Delta(2420)$	L,N=3,1:	$\Delta(2400)$	2.43
5, $rac{1}{2}$,0	$\frac{1}{4}$	N(2600)				$\Delta(2350)$	2.57

Holographic QCD (AdS/QCD)

Parity doublets of N and Δ resonances at high mass region

Parity doublets must not interact by pion emission

and could have a small coupling to πN .

J = $\frac{1}{2}$	$N_{1/2^+}(1880)$ *	$N_{1/2^-}(1890)$ *	$\Delta_{1/2^+}(1910)$ ****	$\Delta_{1/2^-}(1900)^a$ **
J = $\frac{3}{2}$	$N_{3/2^+}(1900)$ **	${f N}_{3/2^-}(1875)$ **	$\Delta_{3/2^+}(1940)^{a}$ ***	$\Delta_{3/2^-}(1990)^a$ *
J = $\frac{5}{2}$	$N_{5/2^+}(1880)$ **	$N_{5/2^-}(2070)$	$\Delta_{5/2^+}(1940)$ ****	$\Delta_{5/2^-}(1930)^a$ ***
$J = \frac{7}{2}$	$N_{7/2^+}(1980)$ **	${f N}_{7/2^-}(2170)$ ****	$\Delta_{7/2^+}(1920)$ ****	$\Delta_{7/2^{-}}(2200)$ *
$J=\frac{9}{2}$	$N_{9/2^+}(2220)$ ****	${ m N}_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^{-}}(2400)^{a}$ **

$J = \frac{5}{2}$	$N_{5/2^+}(2100)$ **	$N_{5/2^-}(2070)$	$\Delta_{5/2^+}(1940)$ ****	$\Delta_{5/2^-}(1930)^a$ ***
J = $\frac{7}{2}$	$N_{7/2^+}(2100)$ **	$N_{7/2^-}(2160)$ ****	$\Delta_{7/2^+}(1920)$ ****	$\Delta_{7/2^{-}}(2200)$ *
$J=\frac{9}{2}$	${ m N}_{9/2^+}(2220)$ ****	${f N}_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^-}(2400)^a$ **

Summary

- The analysis of (almost) all available data for production of baryons in the pion and photo induced reaction is completed.
- We have observed a set of new states in the region 1800-2150 MeV, however, this number is much less than that predicted by the classical quark model.
- The low spin states in this mass region fit very well the AdS/QCD prediction as well as with the idea about chiral restoration at high energies.
- New, high precision data on πN collision (especially into ηN and $\pi^+\pi^-N$ final) can confirm and probably discover new baryon states.
- Analysis of NN collision can supply an information about baryons with week photo and πN couplings.

The analysis of PNPI data on meson production in pp and np collisions (maximum likelihood approach)

n	Reaction	p_{beam}	N_{data}	Origin
1	$pp \to \pi^0 pp$	1683 MeV/c	1094	Gatchina
2	$pp \to \pi^0 pp$	1581 MeV/c	903	Gatchina
3	$pp \to \pi^0 pp$	1536 MeV/c	1319	Gatchina
4	$pp \to \pi^0 pp$	1485 MeV/c	997	Gatchina
5	$pp \to \pi^0 pp$	1437 MeV/c	918	Gatchina
6	$pp \to \pi^0 pp$	1389 MeV/c	996	Gatchina
7	$pp \to \pi^0 pp$	1341 MeV/c	883	Gatchina
8	$pp \to \pi^0 pp$	1279 MeV/c	621	Gatchina
9	$pp \to \pi^0 pp$	1217 MeV/c	544	Gatchina
10	$np \to \pi^- pp$	1-1.9 GeV/c	8210	Gatchina
11	$pp \to \pi^0 pp$	950 MeV/c	154972	Tübingen
13	$pp \to \pi^0 pp$	σ_{tot} 1217-1683 MeV	9	Gatchina

Parameterization

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|\vec{k}|\sqrt{s}} \, d\Phi_3(P, q_1, q_2, q_3) \;,$$

$$A = \sum_{\alpha} A^{\alpha}_{tr}(s) Q^{in}_{\mu_1 \dots \mu_J}(SLJ) A_{2b}(i, S_2 L_2 J_2)(s_i) Q^{fin}_{\mu_1 \dots \mu_J}(i, S_2 L_2 J_2 S' L' J) .$$

Angular-spin momentum operators $Q_{\mu_1...\mu_J}(SLJ)$ are given in A. V. Anisovich et. al Eur.Phys.J. A34 (2007) 129.

$$A_{tr}^{\alpha}(s) = \frac{a_1^{\alpha} + a_3^{\alpha}\sqrt{s}}{s - a_4^{\alpha}} e^{ia_2^{\alpha}},$$

Decay modes: $\Delta(1232)N$, $P_{11}(1440)N$ and $\pi(NN)$. In NN channel amplitude was parameterized with generalized Watson-Migdal formula:

$$A_{2b}^{\beta}(s_i) = \frac{\sqrt{s_i}}{1 - \frac{1}{2}r^{\beta}q^2 a_{pp}^{\beta} + iqa_{pp}^{\beta}q^{2L}/F(q, r^{\beta}, L)},$$

Description of $pp \rightarrow pp\pi^0$:

Description of $pp \rightarrow pp\pi^0$:

Dashed lines - I = 1, dotted lines - I = 0

Krakow 2012

The cross section for pion production in nucleon-nucleon collision with I = 1 is well known. However there are very poor data about I = 0 cross section.

$$\sigma(I=0) = 3[2\sigma(np \to pp\pi^{-}) - \sigma(pp \to pp\pi^{0})]$$

140

Scattering length

The isoscalar initial channel provides us a good tool for the determination of scattering length of the final pp system in the pion production reactions.

1